scholarly journals Assessing last mile delivery strategies � A hybrid solution approach

2022 ◽  
Vol 2 ◽  
Author(s):  
Iurii Bakach ◽  
Ann Melissa Campbell ◽  
Jan Fabian Ehmke

Since delivery robots share sidewalks with pedestrians, it may be beneficial to choose paths for them that avoid zones with high pedestrian density. In this paper, we investigate a robot-based last-mile delivery problem considering path flexibility given the presence of zones with varying pedestrian level of service (LOS). Pedestrian LOS is a measure of pedestrian flow density. We model this new problem with stochastic travel times and soft customer time windows. The model includes an objective that reflects customer service quality based on early and late arrivals. The heuristic solution approach uses the minimum travel time paths from different LOS zones (path flexibility). We demonstrate that the presence of pedestrian zones leads to alternative path choices in 30% of all cases. In addition, we find that extended time windows may help increase service quality in zones with high pedestrian density by up to 40%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ehsan Rashidzadeh ◽  
Seyyed Mohammad Hadji Molana ◽  
Roya Soltani ◽  
Ashkan Hafezalkotob

Purpose Delivery management of perishable products such as blood in a supply chain is a considerable issue such that the last-mile delivery, which refers to deliver goods to the end user as fast as possible takes into account as one of the most important, expensive and, polluting segments in the entire supply chain. Regardless of economic challenges, the last-mile delivery faces social and environmental barriers to continuing operations while complying with environmental and social standards, therefore incorporating sustainability into last-mile logistic strategy is no longer an option but rather a necessity. Accordingly, the purpose of this paper is to consider a last-mile delivery in a blood supply chain in terms of using appropriate technologies such as drones to assess sustainability. Design/methodology/approach The authors discuss the impact of drone technology on last-mile delivery and its importance in achieving sustainability. They focus on the effect of using drones on CO2 emission, costs and social benefits by proposing a multi-objective mathematical model to assess sustainability in the last-mile delivery. A preemptive fuzzy goal programming approach to solve the model and measure the achievement degree of sustainability is conducted by using a numerical example to show the capability and usefulness of the suggested model, solution approach and, impact of drone technology in achieving all three aspects of sustainability. Findings The findings illustrate the achievement degree of sustainability in the delivery of blood based on locating distribution centers and allocating drones. Moreover, a comparison between drones and conventional vehicles is carried out to show the preference of using drones in reaching sustainability. A sensitivity analysis on aspects of sustainability and specifications of drone technology is conducted for validating the obtained results and distinguishing the most dominant aspect and parameters in enhancing the achievement degree of sustainability. Originality/value To the best of the authors’ knowledge, no research has considered the assessment of sustainability in the last-mile delivery of blood supply chain with a focus on drone technology.


Author(s):  
Vincent E. Castillo ◽  
John E. Bell ◽  
Diane A. Mollenkopf ◽  
Theodore P. Stank

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ahram Jeon ◽  
Joohang Kang ◽  
Byungil Choi ◽  
Nakyung Kim ◽  
Joonyup Eun ◽  
...  

Author(s):  
Peter Kurzweil ◽  
Alfred Müller ◽  
Steffen Wahler

Compared to the medical, economic and social implications of COVID-19 vaccinations, little attention has been paid to the ecological balance to date. This study is an attempt to estimate the environmental impact of two mRNA vaccines in terms of CO2 equivalents with respect to their different freezing strategies and supply chain organization. Although it is impossible to accurately calculate the actual environmental impact of the new biochemical synthesis technology, it becomes apparent that transport accounts for up to 99% of the total carbon footprint. The emissions for air freight, road transportation and last-mile delivery are nearly as 19 times the emissions generated from ultra-deep freeze technologies, the production of dry ice, glass and medical polymers for packaging. The carbon footprint of a single mRNA vaccine dose injected into a patient is about 0.01 to 0.2 kg CO2 equivalents, depending on the cooling technology and the logistic routes to the vaccination sites in Germany.


Sign in / Sign up

Export Citation Format

Share Document