scholarly journals The Ecological Footprint of COVID-19 mRNA Vaccines: Estimating Greenhouse Gas Emissions in Germany

Author(s):  
Peter Kurzweil ◽  
Alfred Müller ◽  
Steffen Wahler

Compared to the medical, economic and social implications of COVID-19 vaccinations, little attention has been paid to the ecological balance to date. This study is an attempt to estimate the environmental impact of two mRNA vaccines in terms of CO2 equivalents with respect to their different freezing strategies and supply chain organization. Although it is impossible to accurately calculate the actual environmental impact of the new biochemical synthesis technology, it becomes apparent that transport accounts for up to 99% of the total carbon footprint. The emissions for air freight, road transportation and last-mile delivery are nearly as 19 times the emissions generated from ultra-deep freeze technologies, the production of dry ice, glass and medical polymers for packaging. The carbon footprint of a single mRNA vaccine dose injected into a patient is about 0.01 to 0.2 kg CO2 equivalents, depending on the cooling technology and the logistic routes to the vaccination sites in Germany.

2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković

In order to demonstrate the environmental impact of the increased flow of thermal insulation materials and facade joinery with improved thermal characteristics, the analysis of the carbon footprint for two scenarios for the needs of the research was done as a consequence of the new regulations on the energy efficiency of the facilities. For each of the analyzed scenarios, a project and an overview of works on the basis of which quantities of construction materials, activities and processes that participate in the construction of the analyzed scenarios were calculated (S1 and S2), were made. The reference object (S1) is designed without thermal insulation layers, the energy class „G“, and the scenario (S2) is designed in the energy class „C“, which according to the new regulations is a condition for the construction of new facilities. The study uses the Life Cycle Analysis (LCA), a methodology that is the basis for Carbon Lifecycle Analysis (LCACO2), or calculation of the carbon footprint of the facility. Construction carbon calculator, Environmental Protection Agency UK, is used to calculate the carbon footprint, and for the calculation of operational energy, the URSA Construction Physics 2 program. The study showed that the embodied carbon for the scenario (S1) is 138,40 tonnes CO2 e, with less impact on the environment. The higher values of the embodied carbon have a scenario (S2) of 148,20 tonnes CO2 e. The carbon imprint from the phase of construction, or less impact on the environment, has a scenario (S1). However, after ten years of using the facility, the scenario (S1) due to the larger carbon footprint from the operational phase becomes a scenario with a higher environmental impact, with a total carbon footprint of 186,16 tonnes CO2 e, and the scenario (S2) after ten years of use of the facility has a total carbon footprint of 163,86 tonnes CO2 e. The scenario (S1) and (S2) achieve the same values of the total carbon footprint after 3,05 years of use of the facility and (S2) has since then become a better choice from the aspect of the environment. The research has shown that the embodied carbon is neglected in the calculation of the environmental impact of the facility, as well as the average when the benefits can be expected from the application of measures for energy-efficient buildings. The research also points to the need for low-carbon thermal insulation materials to bridge the gap between the demand for the extinguishing of buildings on the one hand and the efforts to reduce greenhouse gas emissions to mitigate climate change.


2014 ◽  
Vol 962-965 ◽  
pp. 1529-1540
Author(s):  
Yung Jaan Lee ◽  
Shih Chien Lin

By using carbon dioxide emissions in Taiwan, this study attempts to account for total carbon dioxide emissions and per capita emissions at city and county level, based on the household consumption structure in each region. Carbon dioxide emissions are translated into carbon footprint by using the ecological footprint (EF) method, followed by calculation of total and per capita carbon footprint for each city and county. Analysis results indicate that Taiwan's total carbon dioxide emissions in 2011 were 264.66 million tons, of which New Taipei City, Taipei City and Kaohsiung City were the highest. However, according to the EF framework, the per capita carbon footprint for Taiwan was 5.94 global hectares (gha) in 2011. The highest three counties and cities were Taipei City, Hsinchu City and Hsinchu County. Future research should incorporate the use of direct measures of carbon dioxide emissions in counties and cities, which would produce a more realistic outcome. Moreover, the feasibility of using the EF method to translate carbon dioxide emissions into carbon footprint should also be examined.


2020 ◽  
Vol 12 (22) ◽  
pp. 9770
Author(s):  
José M. González-Varona ◽  
Félix Villafáñez ◽  
Fernando Acebes ◽  
Alfonso Redondo ◽  
David Poza

The current increase in e-commerce is generating growing problems in urban areas in terms of both traffic flow (increasing traffic, no parking spaces) and environmental issues (noise, atmospheric pollution, etc.). In parallel, an iconic element of historic districts is disappearing: more and more newspaper kiosks are closing their business as their work dwindles. In this scenario, the objective of this paper is to propose a model for last-mile parcel delivery that exploits the current available newspaper kiosk network by using them as parcel lockers. To demonstrate the benefits of this proposal, we map the kiosk network of the city of Valladolid (Spain), and compare the environmental impact of a traditional (door-to-door) delivery and the proposed model which reuses old kiosks as parcel lockers. The necessary steps to carry out simulations are described in detail so that experiments can be replicated in other cities that face the same issues.


2017 ◽  
Vol 2 (1) ◽  
pp. 59
Author(s):  
Nor Izana Mohd Shobri ◽  
Wan Noor Anira Hj Wan Ali ◽  
Norizan Mt Akhir ◽  
Siti Rasidah Md Sakip

The purpose of this study is to assess the carbon footprint emission at UiTM Perak, Seri Iskandar Campus. The assessment focuses on electrical power and transportation usage. Questionnaires were distributed to the staffs and students to survey their transportation usage in the year 2014 while for electrical consumption, the study used total energy consumed in the year 2014. Data was calculating with the formula by Green House Gas Protocol. Total carbon footprint produced by UiTM Perak, Seri Jskandar Campus in the year 2014 is 11842.09 MTC02' The result of the study is hoped to provide strategies for the university to reduce the carbon footprint emission.


2021 ◽  
pp. 004051752110062
Author(s):  
Weiran Qian ◽  
Xiang Ji ◽  
Pinghua Xu ◽  
Laili Wang

Recycled polyester textile fibers stemming from waste polyester material have been applied in the textile industry in recent years. However, there are few studies focusing on the evaluation and comparison of the environmental impacts caused by the production of virgin polyester textiles and recycled polyester textiles. In this study, the carbon footprint and water footprint of virgin polyester textiles and recycled polyester textiles were calculated and compared. The results showed that the carbon footprint of the virgin polyester textiles production was 119.59 kgCO2/100 kg. Terephthalic acid production process occupied the largest proportion, accounting for 45.83%, followed by polyester fabric production process, ethylene production process, paraxylene production process, ethylene glycol production process and polyester fiber production process. The total carbon footprint of waste polyester recycling was 1154.15 kgCO2/100 kg, approximately ten times that of virgin polyester textiles production. As for the water footprint, it showed that virgin polyester fabric production and recycled polyester fabric production both had great impact on water eutrophication and water scarcity. Chemical oxygen demand caused the largest water eutrophication footprint, followed by ammonia-nitrogen and five-day biochemical oxygen demand. The water scarcity footprint of virgin polyester fabric production and recycled polyester fabric production was 5.98 m3 H2Oeq/100 kg and 1.90 m3 H2Oeq/100 kg, respectively. The comprehensive evaluation of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the polyester fabric production process exhibited greater environmental impacts both for virgin polyester and recycled polyester.


Author(s):  
Vincent E. Castillo ◽  
John E. Bell ◽  
Diane A. Mollenkopf ◽  
Theodore P. Stank

Sign in / Sign up

Export Citation Format

Share Document