Storage of white sugar in large-capacity silos

2021 ◽  
pp. 457-475
Author(s):  
Harald Schindler

In all sugar factories there is a need to store the white sugar produced for a longer or shorter period of time. With today‘s standard factory sizes, storage capacities of more than 100,000 t per factory are necessary. Large-capacity silos such as those built in various designs in the sugar factories are used for this purpose. In addition to an overview of the various silo designs, information on the conditioning and heating of the silos and the requirements for explosion protection are compiled.

2016 ◽  
Vol 136 (1) ◽  
pp. 18-24
Author(s):  
Daisuke Hiramatsu ◽  
Yoichi Uemura ◽  
Dai Nozaki ◽  
Shinji Mukoyama ◽  
Kazuma Tsujikawa ◽  
...  

1992 ◽  
Vol 112 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Yuzuru Kamata ◽  
Masaaki Maejima
Keyword(s):  

2019 ◽  
Vol 11 ◽  
pp. 58-68
Author(s):  
Yury N. SHUMOV ◽  
◽  
Alexander S. SAFONOV ◽  

2018 ◽  
pp. 581-589
Author(s):  
Philipp Bruhns ◽  
Timo Koch ◽  
Lothar Kroh

Storage stability of white beet sugar is an important factor determining the sugar quality. Due to color formation during storage the sugar color can exceed the quality criteria of the European council directive 2001/111/EC for white sugar. It is not possible to predict the color formation tendency of a white sugar lot at the time of its production. Also the source and the mechanism of color formation during storage are unknown. Color formation in general can be caused by several factors, which can be divided into external influences such as humidity and temperature during storage and internal causes such as contents of ash, polyphenols, mono- and oligosaccharides, and amino compounds. In this work, the effect of the above mentioned factors and the nature of the formed colorants were analyzed. Studies on the color distribution in sugar crystals were carried out and the nonsucrose compounds in the surface film were determined. The syrup film on the crystal surface contains the same compounds and in similar contents as thick juice. A correlation between the changes in the amino acid and monosaccharide content and the color formation was established, which shows that the Maillard reaction is responsible for the color development during storage of sugar.


2020 ◽  
pp. 712-721
Author(s):  
Jan Maarten de Bruijn de Bruijn

The bought sugar in the processed raw material (either beet or cane) comprises a high financial value and may contribute to somewhere around 50% of the white sugar production costs. It is therefore of the utmost importance to minimize sugar losses along the process and produce as much white sugar as possible from the raw material. This paper explains the principle of technical accounting as tool to control sugar extraction and losses in beet sugar manufacture. The sugar mass balance used to calculate the overall sugar extraction yield, as well as several simple calculations proposed for estimating the different sugar losses (like e.g. extraction (diffusion) losses, infection losses, sugar losses in molasses, etc.) in the subsequent process steps will be explained in detail. Proper technical accounting is considered indispensable for continuous process control and process improvement in pursuit of best-practice operation and cost-leadership.


2020 ◽  
pp. 282-287
Author(s):  
Jan Maarten de Bruijn

Lime salts in the thin juice obtained after juice purification is one of the most important chemical KPI’s (Key Performance Indicator) in beet processing. Too high lime salts content will significantly affect processing costs – particularly energy – due to scaling of heat exchange surfaces thus decreasing heat transfer. In addition, high lime salts are at the origin of turbidity and insoluble solids in white sugar. Therefore, it is of the utmost importance to understand the chemistry behind lime salts in beet processing in order to be able preventing too high lime salts contents in thin juice. This paper will explain the details of the chemistry behind the presence of lime salts. Further, a trouble-shooting guide is included to elucidate the different causes for high lime salts contents and how these causes can be identified, as well as the process measures to reduce the lime salts content in thin juice.


Sign in / Sign up

Export Citation Format

Share Document