surface film
Recently Published Documents


TOTAL DOCUMENTS

973
(FIVE YEARS 121)

H-INDEX

59
(FIVE YEARS 5)

CORROSION ◽  
10.5006/4000 ◽  
2021 ◽  
Author(s):  
Ali Ashrafriahi ◽  
Anatolie Carcea ◽  
Roger Newman

This work is aimed at improving the understanding of the localized corrosion of carbon steel in ethanolic solutions. The role of ethanol dehydration, chloride, and oxygen level in the pitting behaviour of carbon steel in ethanolic environments in the presence of supporting electrolytes was investigated. Open Circuit Potential measurement, Cyclic Potentiodynamic Polarization and Potentiostatic testing were conducted on specimens exposed to ethanolic environments prepared from pure dehydrated ethanol to study the pitting behaviour of carbon steel. Corrosion and passivation potentials significantly reduce due to the change in the cathodic reaction and the decrease in passivation kinetics under de-aerated conditions. SEM and EDX examination indicated that no pitting corrosion is observed without chlorides, and chloride significantly destabilizes the surface film resulting in decreases of both corrosion potential and passivation potential. A decrease in the dissolved oxygen in the solution reduces but does not eliminate the pitting susceptibility. Iron oxide is identified as the significant corrosion product at different water and oxygen content. Therefore, ethanol aeration can be a proper method to increase pitting corrosion resistance in ethanolic solutions.


2021 ◽  
Vol 118 (51) ◽  
pp. e2109967118
Author(s):  
Fleurie M. Kelley ◽  
Bruna Favetta ◽  
Roshan Mammen Regy ◽  
Jeetain Mittal ◽  
Benjamin S. Schuster

Cells contain membraneless compartments that assemble due to liquid–liquid phase separation, including biomolecular condensates with complex morphologies. For instance, certain condensates are surrounded by a film of distinct composition, such as Ape1 condensates coated by a layer of Atg19, required for selective autophagy in yeast. Other condensates are multiphasic, with nested liquid phases of distinct compositions and functions, such as in the case of ribosome biogenesis in the nucleolus. The size and structure of such condensates must be regulated for proper biological function. We leveraged a bioinspired approach to discover how amphiphilic, surfactant-like proteins may contribute to the structure and size regulation of biomolecular condensates. We designed and examined families of amphiphilic proteins comprising one phase-separating domain and one non–phase-separating domain. In particular, these proteins contain the soluble structured domain glutathione S-transferase (GST) or maltose binding protein (MBP), fused to the intrinsically disordered RGG domain from P granule protein LAF-1. When one amphiphilic protein is mixed in vitro with RGG-RGG, the proteins assemble into enveloped condensates, with RGG-RGG at the core and the amphiphilic protein forming the surface film layer. Importantly, we found that MBP-based amphiphiles are surfactants and influence droplet size, with increasing surfactant concentration resulting in smaller droplet radii. In contrast, GST-based amphiphiles at increased concentrations coassemble with RGG-RGG into multiphasic structures. We propose a mechanism for these experimental observations, supported by molecular simulations of a minimalist model. We speculate that surfactant proteins may play a significant role in regulating the structure and function of biomolecular condensates.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4301
Author(s):  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Gregor Primc ◽  
Miran Mozetič ◽  
Tadeja Katan ◽  
...  

The biocompatibility of body implants made from polytetrafluoroethylene (PTFE) is inadequate; therefore, the surface should be grafted with biocompatible molecules. Because PTFE is an inert polymer, the adhesion of the biocompatible film may not be appropriate. Therefore, the PFTE surface should be modified to enable better adhesion, preferably by functionalization with amino groups. A two-step process for functionalization of PTFE surface is described. The first step employs inductively coupled hydrogen plasma in the H-mode and the second ammonia plasma. The evolution of functional groups upon treatment with ammonia plasma in different modes is presented. The surface is saturated with nitrogen groups within a second if ammonia plasma is sustained in the H-mode at the pressure of 35 Pa and forward power of 200 W. The nitrogen-rich surface film persists for several seconds, while prolonged treatment causes etching. The etching is suppressed but not eliminated using pulsed ammonia plasma at 35 Pa and 200 W. Ammonia plasma in the E-mode at the same pressure, but forward power of 25 W, causes more gradual functionalization and etching was not observed even at prolonged treatments up to 100 s. Detailed investigation of the XPS spectra enabled revealing the surface kinetics for all three cases.


Author(s):  
Shaikh Faisal ◽  
Mojtaba Amjadipour ◽  
Kimi Izzo ◽  
James Singer ◽  
Avi Bendavid ◽  
...  

Abstract Brain-machine interfaces are key components for the development of hands-free, brain -controlled devices. Electroencephalogram (EEG) electrodes are particularly attractive for harvesting the neural signals in a non-invasive fashion. Here, we explore the use of epitaxial graphene grown on silicon carbide on silicon for detecting the electroencephalogram signals with high sensitivity. This dry and non-invasive approach exhibits a markedly improved skin contact impedance when benchmarked to commercial dry electrodes, as well as superior robustness, allowing prolonged and repeated use also in a highly saline environment. In addition, we report the newly -observed phenomenon of surface conditioning of the epitaxial graphene electrodes. The prolonged contact of the epitaxial graphene with the skin electrolytes functionalize the grain boundaries of the graphene, leading to the formation of a thin surface film of water through physisorption and consequently reducing its contact impedance by more than 75%. This effect is primed in highly saline environments, and could be also further tailored as pre-conditioning to enhance the performance and reliability of the epitaxial graphene sensors.


Author(s):  
Jiang Zhao ◽  
zekun wang ◽  
Zhengminqing Li ◽  
Rupeng Zhu

Abstract A machined surface has observable fractal characteristics, with infinite local and overall self-similar consistency. Therefore, the fractal theory is considered to provide a better description of the morphological characteristics of rough surfaces, which accurately reflects the randomness and multi-scale characteristics of rough surfaces and it is not comparable with the surface characteristics obtained based on statistical parameters limited by sampling length and device resolution. In this study, the Weierstrass-Mandelbrot (W-M) function was applied to construct a fractal reconstruction surface, and the mixed elastohydrodynamic lubrication model was used to investigate the lubrication characteristics of real and reconstructed surfaces under the same fractal parameters. The effects of the fractal parameters on the fractal surface lubrication characteristics were further analyzed. The results demonstrate that the lateral roughness fractal surface provides greater resistance to the entrained flow of lubricant, which leads to a larger average film thickness, than the longitudinal roughness and isotropic fractal surface. With the increase in fractal dimension, the surface roughness peak density increases, which reduces the surface film thickness by 47%, and the friction coefficient increases by 46%. The lubrication parameter fluctuates slightly with the change in the number of overlapping ridges M of the fractal surface. Generally, M has little effect on the surface lubrication characteristics.


Author(s):  
Hui Wang ◽  
Jaegeon Ryu ◽  
Scott A McClary ◽  
Daniel M Long ◽  
Mingxia Zhou ◽  
...  

Abstract Highly reversible Mg plating/stripping is key for rechargeable Mg batteries and has typically been successfully demonstrated using transient electrochemical techniques such as cyclic voltammetry measurements. However, little effort has been invested in studying the stability of the electrode/electrolyte interface over an extended time. We report here the development an in situ generated surface film for Mg anodes based on electrodeposited bismuth (E_Bi). This film improves the interfacial stability of Mg in contact with the electrolyte, particularly over an extended time, and possesses fast charge-transfer kinetics (< 30 Ω∙cm2) and low non-time-sensitive interfacial film resistance (ca. 5 Ω∙cm2) for active Mg species.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1764
Author(s):  
Cyprian Illing ◽  
Zhe Ren ◽  
Anna Agaponova ◽  
Arthur Heuer ◽  
Frank Ernst

For rapid surface engineering of Cr-containing alloys by low-temperature nitrocarburization, we introduce a process based on pyrolysis of solid reagents, e.g., urea, performed in an evacuated closed vessel. Upon heating to temperatures high enough for rapid diffusion of interstitial solute, but low enough to avoid second-phase precipitation, the reagent is pyrolyzed to a gas atmosphere containing molecules that (i) activate the alloy surface by stripping away the passivating Cr2O3-rich surface film (diffusion barrier) and (ii) rapidly infuse carbon and nitrogen into the alloy. We demonstrate quantitatively that this method can generate a subsurface zone with concentrated carbon and nitrogen comparable to what can be accomplished by established (e.g., gas-phase- or plasma-based) methods, but with significantly reduced processing time. As another important difference to established gas-phase processing, the interaction of gas molecules with the alloy surface can have auto-catalytic effects by altering the gas composition in a way that accelerates solute infusion by providing a high activity of HNCO. The new method lends itself to rapid experimentation with a minimum of laboratory equipment.


Author(s):  
Se-Young Hyun ◽  
Yong-Tae Kim ◽  
Sang-Yong Kim ◽  
Bong-Gyu Kim

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yucong Ma ◽  
Mohd Talha ◽  
Qi Wang ◽  
Zhonghui Li ◽  
Yuanhua Lin

Purpose The purpose of this paper is to study systematically the corrosion behavior of AZ31 magnesium (Mg) alloy with different concentrations of bovine serum albumin (BSA) (0, 0.5, 1.0, 1.5, 2.0 and 5.0 g/L). Design/methodology/approach Electrochemical impedance spectroscopy and potential dynamic polarization tests were performed to obtain corrosion parameters. Scanning electrochemical microscopy (SECM) was used to analyze the local electrochemical activity of the surface film. Atomic force microscope (AFM), Scanning electron microscope-Energy dispersive spectrometer and Fourier transform infrared spectroscopy were used to determine the surface morphology and chemical composition of the surface film. Findings Experimental results showed the presence of BSA in a certain concentration range (0 to 2.0 g/L) has a greater inhibitory effect on the corrosion of AZ31, however, the presence of high-concentration BSA (5.0 g/L) would sharply reduce the corrosion resistance. Originality/value When the concentration of BSA is less than 2.0 g/L, the corrosion resistance of AZ31 enhances with the concentration. The adsorption BSA layer will come into being a physical barrier to inhibit the corrosion process. However, high-concentration BSA (5.0 g/L) will chelate with dissolved metal ions (such as Mg and Ni) to form soluble complexes, which increases the roughness of the surface and accelerates the corrosion process.


Sign in / Sign up

Export Citation Format

Share Document