scholarly journals Solitary Wave Solutions of the Generalized (3+1)-Dimensional Shallow Water-Like Equation by using modified Kudryashov method

Author(s):  
Asıf YOKUŞ
2020 ◽  
Vol 30 (03) ◽  
pp. 2050036 ◽  
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

For three two-component shallow water wave models, from the approach of dynamical systems and the singular traveling wave theory developed in [Li & Chen, 2007], under different parameter conditions, all possible bounded solutions (solitary wave solutions, pseudo-peakons, periodic peakons, as well as smooth periodic wave solutions) are derived. More than 19 explicit exact parametric representations are obtained. Of more interest is that, for the integrable two-component generalization of the Camassa–Holm equation, it is found that its [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions. In addition, its [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions. The new results complete a recent study by Dutykh and Ionescu-Kruse [2016].


1999 ◽  
Vol 54 (3-4) ◽  
pp. 272-274
Author(s):  
Woo-Pyo Hong ◽  
Young-Dae Jung

We perform a computerized symbolic computation to find some general solitonic solutions for the general fifth-order shal-low water-wave models. Applying the tanh-typed method, we have found certain new exact solitary wave solutions. The pre-viously published solutions turn out to be special cases with restricted model parameters.


2018 ◽  
Vol 23 (6) ◽  
pp. 942-950 ◽  
Author(s):  
Anjan Biswasa ◽  
Mehmet Ekici ◽  
Abdullah Sonmezoglu

This paper discusses shallow water waves that is modeled with Boussinesq equation that comes with dual dispersion and logarithmic nonlinearity. The extended trial function scheme retrieves exact Gaussian solitary wave solutions to the model.


Sign in / Sign up

Export Citation Format

Share Document