scholarly journals EXPLORATION OF THE MTSAT2 SATELLITE CAPABILITIES FOR REAL TIME DETECTION AND CHARACTERIZATION OF VOLCANIC EMISSIONS

2015 ◽  
Author(s):  
Nicholas R. Stewart
2002 ◽  
Vol 01 (05n06) ◽  
pp. 663-666
Author(s):  
DO-KYUN KIM ◽  
YOUNG-SOO KWON ◽  
EIICHI TAMIYA

In this research, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. For detection of DNA hybridization assay, a high-density array of sensor probes were prepared by randomly distributing a mixture of particles immobilized with oligonucleotides for DNA chip applications. With the evanescent field excitation and real-time detection method, we suggest that a very sharp discrimination of bulk fluorescence against surface excitation in combination with high excitation intensities can be achieved.


2016 ◽  
Vol 43 (13) ◽  
pp. 6960-6967 ◽  
Author(s):  
Andrea Manconi ◽  
Matteo Picozzi ◽  
Velio Coviello ◽  
Francesca De Santis ◽  
Luca Elia

2021 ◽  
Vol 133 (1021) ◽  
pp. 034503
Author(s):  
Chung-Kai Huang ◽  
Matthew J. Lehner ◽  
Agueda Paula Granados Contreras ◽  
Joel H. Castro-Chacón ◽  
Wen-Ping Chen ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 2022-2032 ◽  
Author(s):  
S. E. Calhoun ◽  
C. J. Meunier ◽  
C. A. Lee ◽  
G. S. McCarty ◽  
L. A. Sombers

2021 ◽  
Author(s):  
Bixen Telletxea ◽  
Mar Tapia ◽  
Marta Guinau ◽  
Manuel J. Royán ◽  
Pere Roig Lafon ◽  
...  

<p>Seismic sensors installed in areas prone to rockfalls provide a continuous record of the phenomenon, allowing real-time detection and characterization. Detection of small scale rockfalls (< 0.001 m<sup>3</sup>), that might be precursors of larger events, can be worthwhile for early warning systems of rockfalls. However, seismic signals are closely dependent on the characteristics of the event and on the geotechnical characteristics of the ground, making the detection of small rockfalls complex and requiring detailed in-situ analyzes. For this reason, an experiment was carried out on the UB experimental site (Puigcercós Cliff, Catalonia, NE Spain) on 6<sup>th</sup>-7<sup>th</sup> of June 2013, where 21 rocks with volumes ranging from 0.0015 m<sup>3</sup> to 0.0004 m<sup>3</sup> were thrown from the top of the cliff (200 m long and 27 m high) and the seismic signals were registered with three 3D short period seismic sensors located at different distances from the rock wall: 57 m, 67 m, and 107 m.</p><p>The recorded seismic signals have a frequency content between 10-30 Hz, and the duration of the peak amplitudes varied between 0.3 and 0.6 s. Based on these characteristics, different phases of the dynamics of the rockfalls were identified, including main impacts, rebounds, flights, rolling and final stop of the events. The furthest station recorded the lowest frequency and amplitude values, limiting our ability to detect those blocks smaller than 0.0015 m<sup>3</sup>. Comparing the results with the nearest station, seismic attenuation phenomena is detectable even at distances of 50 m.</p><p>After the experiment, a permanent seismic station was installed in the area, at 107 m from the cliff. Using LiDAR and 2D imagery monitoring, two naturally triggered rockfalls were identified on 30<sup>th</sup> and 31<sup>st</sup> August 2017 (0.28 m<sup>3</sup> and 0.25 m<sup>3</sup> respectively). Based on the results from the experiment and an automatic detection system, these main events and prior minor events have been found in the continuous seismic records of this permanent station. The characteristics of these natural detachments differ partially from the artificially triggered rockfalls during the experiment, since the geometry of the seismic signals is different. The observed shapes of the natural detachments are similar to that of granular flows, much more continuous than the sharp shapes that were observed in the isolated blocks of the experiment. This shows the possibility of incorporating seismic stations for the automatic detection and initial characterization of rockfalls and its effectiveness in detecting frequencies of occurrence.</p><p>In order to evaluate the possibility of estimating rockfall volumes, diverse energy ratios (<em>E<sub>s</sub>/E<sub>p</sub></em>) were calculated. However, precise volume estimation is not possible. Nevertheless, the combination of seismic data with LiDAR and photographic techniques allows accurate new volume calculations of rockfalls to be incorporated progressively into the study of rockfalls.</p><p>ACKNOWLEDGMENTS: The authors would like to acknowledge the financial support from CHARMA (CGL2013-40828-R) and PROMONTEC (CGL2017-84720-R AEI/FEDER, UE) projects, Spanish MINEICO. We are also thankful to Origens UNESCO Global Geopark.</p>


2021 ◽  
Author(s):  
Mazzara Christophe ◽  
Julien Salvadori ◽  
Florian Ritzenthaler ◽  
Simon Martin ◽  
Clémence Porot ◽  
...  

Abstract Purpose. Given the recent and rapid development of peptide receptor radionuclide therapy (PRRT), increasing emphasis should be placed on the early identification and quantification of therapeutic radiopharmaceutical (thRPM) extravasation during intravenous administration. Herein, we provide an analytical model of 177Lu-DOTA0-Tyr3-octreotate (Lutathera®) infusion for real-time detection and characterization of thRPM extravasation. Methods. For 33 Lutathera®-based PRRT procedures using the gravity infusion method, equivalent dose rates (EDRs) were monitored at the patient’s arm. Models of flow dynamics for nonextravasated and extravasated infusions were elaborated and compared to experimental data through an equivalent dose rate (EDR) calibration. Nonextravasated infusion was modeled by assuming constant volume dilution of 177Lu activity concentration in the vial and Poiseuille-like laminar flow through the tubing and patient vein. Extravasated infusions were modeled according to their onset times by considering elliptically shaped extravasation with different aspect ratios. Results. Over the 33 procedures, the peak of the median EDR was reached 14 min after the start of the infusion with a value of 450 uSv/h. On the basis of experimental measurements, 1 mSv/h was considered the empirical threshold for Lutathera® extravasation requiring cessation of the infusion and start again with a new route of injection. According to our model, the concentration of extravascular activity was directly related to the time of extravasation onset and its duration, a finding inherent in the gravity infusion method. This result should be considered when planning therapeutic strategy in the case of RPM extravasation because the local absorbed dose for β-emitters is closely linked to activity concentration. For selected EDR values, charts of extravasated activity, volume, and activity concentration were computed for extravasation characterization. Conclusion. We proposed an analytical model of Lutathera® infusion and extravasation (gravity method) based on EDR monitoring. This approach could be useful for the early detection of thRPM extravasation and for the real-time assessment of activity concentration and volume accumulation in the extravascular medium.


Sign in / Sign up

Export Citation Format

Share Document