scholarly journals Rancang Bangun Aplikasi Puzzle Tokoh Walisongo Metode Steepest Ascent Hill Climbing Berbasis Android

2020 ◽  
Vol 1 (1) ◽  
pp. 15-19
Author(s):  
Khairil Anam ◽  
Eko Duwi Prastiyo

Game is one of the applications that can improve one's development and thinkingpower. When someone plays the game, it is indirectly required to complete the missionand obstacles in the game. That is why playing games can be said to enhance one'sdevelopment and thinking power. One game that can improve the development of one'sthinking power is a puzzle game. Puzzle is a game that is played in pairs and pairs, soas to produce something that has been determined by a system. This puzzle game isvery popular with children, adolescents, adults and also parents. Stepest Ascent HillClimbing searches based on the best heuristic value. In this case the use of the operatordoes not determine the inventor of the solution. Steepest Ascent Hill Climbing is analgorithm method that is widely used for optimization problems

2019 ◽  
Vol 1 (3) ◽  
pp. 127-132
Author(s):  
Desti Fitriati ◽  
Nura Meutia Nessrayasa

Searching and determining the shortest route is a complex problem, looking for the shortest route from a number of attractions and the distance between attractions. With varying access paths, the shortest route search becomes the right choice using a website-based app that provides the closest route on a map using the SAHC (Steepest Ascent Hill Climbing) algorithm. Steepest Ascent Hill Climbing is a method of an algorithm that is widely used for optimization problems. One application is to find the shortest route by maximizing or minimizing the value of the existing optimization function. In research ii study using 34 provinces in Indonesia and every province, there are 5 most popular tour, accuracy value obtained in research determination of the shortest distance of tourist city in Indonesia is 93,3%.  


2018 ◽  
Vol 3 (2) ◽  
pp. 36
Author(s):  
Hairul Anam ◽  
Feby Sabilhul Hanafi ◽  
Ahmad Fauzal Adifia ◽  
Ahmad Firdaus Ababil ◽  
Saiful Bukhori

Puzzle is one example of the application of artificial intelligence, in the process of completion there are many search algorithms that can be applied. The 8 puzzle solution will be faster obtained if the array principle is used with a variation of the Steepest-Ascent Hill Climbing (Hill Climbing algorithm by choosing the sharpest / steepest slope) with the correct heuristic parameters and distance heuristics and combined with LogList as the storage state ever passed to overcome the problems in the hill climbing algorithm itself and avoid the looping state that has been passed. Steepest Ascent Hill Climbing is an algorithm method that is widely used for optimization problems. The application of the SAHC (Steepest Ascent Hill Climbing) Algorithm to the puzzle is needed so that the game is completed with optimal time.


2011 ◽  
Vol 4 (1) ◽  
Author(s):  
Daisy Ika Christiana ◽  
Gloria Virginia ◽  
Joko Purwadi

Penugasan adalah penetapan tugas pada tiap pekefia dan tugasnyaagil mendapat hasilyang paling baik, yaitu dengan hasil akhir maksimal dan waktu yang minimal. Masalahpenugasan memiliki syarat satu pekerja hanya mengerjakan satu tugas dan sebaliknya satutugas hanya dikerjakan oleh satu pekerja. Penugasan adalah bagian dari bidang ilmu RisetOperasi (Operation Research ), yang biasa digunakan untuk mencari hasil maksimal atauminimal. Sistem yang akan dibuat ini didukung oleh dua bidang ilmu, yaitu riset operasi dankecerdasan buatan.Dalam bidang ilmu kecerdasan buatan terdapat algoritma yang bisadigunakan untuk memecahkan masalah maksimalisasi yaitu Algoritma Sfeepesf Ascent HillClimbing.Sistem yang dibuat digunakan untukn mencari hasil akhir yang maksimal dari kapasitassuatu produksi. Masukkan berupa jumlah mesin, jumlah pekerja, dan jumlah produksi (matrikkapsitas), prosesnya dilakukan dengan mengkombinasikan hasil perhitungan matrik kapasitasmenggunakan teori penugasan, dan mencari hasil terbaik dengan algoritma Steepest AscentHill Climbing. Hasil perhitungan ditampilkan dalam bentuk rekap iterasi, perhitungan waktuproses, dan komposisi pekerja dan tugasnya. Hasil perhitungan penugasan menggunakanAlgoritma Steepest Ascent Hill Climbing telah diujicoba dengan perhitungan secara sistem danmanual, dan mendapatkan hasil akhir yang sama, jadi bisa dikatakan sistem cukup akurat.


2019 ◽  
Vol 4 (2) ◽  
pp. 268
Author(s):  
Elvina Elvina ◽  
Lukman Hakim

Lintasan kritis merupakan suatu hal yang sangat penting dan perlu diperhatikan dalam penjadwalan proyek, karena lintasan kritis mempunyai dampak terhadap terlambat atau tidaknya suatu proyek. Terdapat kenaikan pada angka pertumbuhan proyek di Indonesia. Oleh karena itu, untuk mendukung keberhasilan proyek tersebut, maka dilakukanlah penelitian terhadap pencarian lintasan kritis. Sehingga nantinya hasil dari penelitian ini berguna bagi para developer yang ingin membuat aplikasi yang menerapkan pencarian lintasan kritis. Parameter dari algoritma ini adalah waktu, yaitu : Earliest Start (ES), Early Finish (EF), Last Start (LS), dan Last Finish (LF). Algoritma Steepest-ascent Hill Climbing  berguna untuk mencari goal berdasarkan nilai heuristik terbaik. Nilai heuristik terbaik yang dijadikan acuan adalah slack time dari kegiatan. Algoritma Backtracking merupakan perbaikan dari algoritma Brute-Force yang berbasis DFS (Deep-First Search). Jurnal ini membahas tentang algoritma Steepest-ascent Hill Climbing yang berguna untuk mencari slack (keterlambatan) guna menjadi tolak ukur dari lintasan kritis, dan backtracking yang berguna untuk mencari ES, EF, LS, dan LF guna menjadi parameter dalam mencari slack (keterlambatan). Angka keberhasilan dari penggabungan algoritma ini untuk mencari lintasan kritis adalah sebesar 80%.


Author(s):  
Aviad Cohen ◽  
Alexander Nadel ◽  
Vadim Ryvchin

AbstractNP-hard combinatorial optimization problems are pivotal in science and business. There exists a variety of approaches for solving such problems, but for problems with complex constraints and objective functions, local search algorithms scale the best. Such algorithms usually assume that finding a non-optimal solution with no other requirements is easy. However, what if it is NP-hard? In such case, a SAT solver can be used for finding the initial solution, but how can one continue solving the optimization problem? We offer a generic methodology, called Local Search with SAT Oracle (), to solve such problems. facilitates implementation of advanced local search methods, such as variable neighbourhood search, hill climbing and iterated local search, while using a SAT solver as an oracle. We have successfully applied our approach to solve a critical industrial problem of cell placement and productized our solution at Intel.


2008 ◽  
Vol 13 (8-9) ◽  
pp. 763-780 ◽  
Author(s):  
Hongfeng Wang ◽  
Dingwei Wang ◽  
Shengxiang Yang

Sign in / Sign up

Export Citation Format

Share Document