scholarly journals Minimal number of crossings in strong product of paths

2013 ◽  
Vol 29 (1) ◽  
pp. 27-32
Author(s):  
MARIAN KLESC ◽  
◽  
JANA PETRILLOVA ◽  
MATUS VALO ◽  
◽  
...  

The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. The exact crossing number is known only for few specific families of graphs. Cartesian products of two graphs belong to the first families of graphs for which the crossing number has been studied. Some results concerning crossing numbers are also known for join products of two graphs. In the paper, we start to collect the crossing numbers for the strong product of graphs, namely for the strong product of two paths.

2012 ◽  
Vol 28 (1) ◽  
pp. 67-75
Author(s):  
MARIAN KLESC ◽  
◽  
JANA PETRILLOVA ◽  

Kulli at al. started to characterize line graphs with crossing number one. In this paper, the similar problems were solved for the Cartesian products of two graphs. The necessary and sufficient conditions are given for all pairs of graphs G1 and G2 for which the crossing number of their Cartesian product G1 × G2 is one or two.


2012 ◽  
Vol 21 (1) ◽  
pp. 65-72
Author(s):  
DANIELA KRAVECOVA ◽  

There are known several exact results concerning crossing numbers of Cartesian products of two graphs. In the paper, we extend these results by giving the crossing number of the Cartesian product ... where Pn is the path of length n and ... is the second power of Pn.


2019 ◽  
Vol 100 (1) ◽  
pp. 5-12
Author(s):  
MICHAEL HAYTHORPE ◽  
ALEX NEWCOMBE

The exact crossing number is only known for a small number of families of graphs. Many of the families for which crossing numbers have been determined correspond to cartesian products of two graphs. Here, the cartesian product of the sunlet graph, denoted ${\mathcal{S}}_{n}$, and the star graph, denoted $K_{1,m}$, is considered for the first time. It is proved that the crossing number of ${\mathcal{S}}_{n}\Box K_{1,2}$ is $n$, and the crossing number of ${\mathcal{S}}_{n}\Box K_{1,3}$ is $3n$. An upper bound for the crossing number of ${\mathcal{S}}_{n}\Box K_{1,m}$ is also given.


2011 ◽  
Vol 61 (5) ◽  
Author(s):  
Emília Draženská

AbstractThe crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. The crossing numbers of G□C n for some graphs G on five and six vertices and the cycle C n are also given. In this paper, we extend these results by determining the crossing number of the Cartesian product G □ C n, where G is a specific graph on six vertices.


2019 ◽  
Vol 342 (3) ◽  
pp. 807-814
Author(s):  
Tanja Gologranc ◽  
Polona Repolusk

2019 ◽  
Vol 35 (2) ◽  
pp. 137-146
Author(s):  
STEFAN BEREZNY ◽  
MICHAL STAS ◽  
◽  

The main purpose of this article is broaden known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product G + Dn, where the graph G consists of one 5-cycle and of one isolated vertex, and Dn consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a new graph COG for calculating the distances between all vertices of the graph. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph Dn and with the path Pn on n vertices for other two graphs.


2018 ◽  
Vol 12 (2) ◽  
pp. 297-317
Author(s):  
Encarnación Abajo ◽  
Rocío Casablanca ◽  
Ana Diánez ◽  
Pedro García-Vázquez

Let G be a connected graph with n vertices and let k be an integer such that 2 ? k ? n. The generalized connectivity kk(G) of G is the greatest positive integer l for which G contains at least l internally disjoint trees connecting S for any set S ? V (G) of k vertices. We focus on the generalized connectivity of the strong product G1 _ G2 of connected graphs G1 and G2 with at least three vertices and girth at least five, and we prove the sharp bound k3(G1 _ G2) ? k3(G1)_3(G2) + k3(G1) + k3(G2)-1.


2017 ◽  
Vol 33 (2) ◽  
pp. 247-256
Author(s):  
JOSEF SLAPAL ◽  

In an undirected simple graph, we define connectedness induced by a set of walks of the same lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This result is used to introduce a graph on the vertex set Z2 with sets of walks that is obtained as the strong product of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in the graph introduced induces connectedness on Z2 that satisfies a digital analogue of the Jordan curve theorem. It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z2 for the study of digital images.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050019
Author(s):  
Yuanan Diao

For an unoriented link [Formula: see text], let [Formula: see text] be the ropelength of [Formula: see text]. It is known that in general [Formula: see text] is at least of the order [Formula: see text], and at most of the order [Formula: see text] where [Formula: see text] is the minimum crossing number of [Formula: see text]. Furthermore, it is known that there exist families of (infinitely many) links with the property [Formula: see text]. A long standing open conjecture states that if [Formula: see text] is alternating, then [Formula: see text] is at least of the order [Formula: see text]. In this paper, we show that the braid index of a link also gives a lower bound of its ropelength. More specifically, we show that there exists a constant [Formula: see text] such that [Formula: see text] for any [Formula: see text], where [Formula: see text] is the largest braid index among all braid indices corresponding to all possible orientation assignments of the components of [Formula: see text] (called the maximum braid index of [Formula: see text]). Consequently, [Formula: see text] for any link [Formula: see text] whose maximum braid index is proportional to its crossing number. In the case of alternating links, the maximum braid indices for many of them are proportional to their crossing numbers hence the above conjecture holds for these alternating links.


2013 ◽  
Vol 313 (13) ◽  
pp. 1490-1495
Author(s):  
E. Abajo ◽  
R.M. Casablanca ◽  
A. Diánez ◽  
P. García-Vázquez

Sign in / Sign up

Export Citation Format

Share Document