scholarly journals Another characterization of hyperbolic diameter diminishing to zero IFSs

2021 ◽  
Vol 37 (2) ◽  
pp. 217-226
Author(s):  
RADU MICULESCU ◽  
ALEXANDRU MIHAIL ◽  
CRISTINA-MARIA PĂCURAR

"In this paper we provide another characterization of hyperbolic diameter diminishing to zero iterated function systems that were studied in [R. Miculescu, A. Mihail, Diameter diminishing to zero IFSs, arXiv:2101.12705]. The primary tool that we use is an operator H_{\mathcal{S}}, associated to the iterated function system \mathcal{S}, which is inspired by the similar one utilized in Mihail (Fixed Point Theory Appl., 2015:75, 2015). Some fixed point results are also obtained as by products of our main result."

2018 ◽  
Vol 7 (3.31) ◽  
pp. 126
Author(s):  
Minirani S ◽  
. .

A finite collection of mappings which are contractions on a complete metric space constitutes an iterated function system. In this paper we study the generalized iterated function system which contain generalized contractions of integral type from the product space . We prove the existence and uniqueness of the fixed point of such an iterated function system which is also known as its attractor. 


2005 ◽  
Vol 72 (3) ◽  
pp. 441-454 ◽  
Author(s):  
Gertruda Gwóźdź-Lukawska ◽  
Jacek Jachymski

We show that some results of the Hutchinson-Barnsley theory for finite iterated function systems can be carried over to the infinite case. Namely, if {Fi:i∈ ℕ} is a family of Matkowski's contractions on a complete metric space (X, d) such that (Fix0)i∈Nis bounded for somex0∈X, then there exists a non-empty bounded and separable setKwhich is invariant with respect to this family, that is,. Moreover, given σ ∈ ℕℕandx∈X, the limit exists and does not depend onx. We also study separately the case in which (X, d) is Menger convex or compact. Finally, we answer a question posed by Máté concerning a finite iterated function system {F1,…,FN} with the property that each ofFihas a contractive fixed point.


2012 ◽  
Vol 3 (4) ◽  
pp. 49-65
Author(s):  
Sarika Jain ◽  
S. L. Singh ◽  
S. N. Mishra

Barnsley (2006) introduced the notion of a fractal top, which is an addressing function for the set attractor of an Iterated Function System (IFS). A fractal top is analogous to a set attractor as it is the fixed point of a contractive transformation. However, the definition of IFS is extended so that it works on the colour component as well as the spatial part of a picture. They can be used to colour-render pictures produced by fractal top and stealing colours from a natural picture. Barnsley has used the one-step feed- back process to compute the fractal top. In this paper, the authors introduce a two-step feedback process to compute fractal top for contractive and non-contractive transformations.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Maliheh Mohtashamipour ◽  
Alireza Zamani Bahabadi

AbstractIn this paper, we define accessibility on an iterated function system (IFS) and show that it provides a sufficient condition for the transitivity of this system and its corresponding skew product. Then, by means of a certain tool, we obtain the topologically mixing property. We also give some results about the ergodicity and stability of accessibility and, further, illustrate accessibility by some examples.


2020 ◽  
Vol 12 (8) ◽  
pp. 1038-1043
Author(s):  
Wadia Faid Hassan Al-Shameri

Barnsley (Barnsley, M.F., 1986. Fractal functions and interpolation. Constr. Approx., 2, pp.303–329) introduced fractal interpolation function (FIF) whose graph is the attractor of an iterated function system (IFS) for describing the data that have an irregular or self-similar structure. Barnsley et al. (Barnsley, M.F., et al., 1989. Recurrent iterated function systems in fractal approximation. Constr. Approx., 5, pp.3–31) generalized FIF in the form of recurrent fractal interpolation function (RFIF) whose graph is the attractor of a recurrent iterated function system (RIFS) to fit data set which is piece-wise self-affine. The primary aim of the present research is investigating the RFIF approach and using it for fitting the piece-wise self-affine data set in ℜ2.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Alireza Zamani Bahabadi

AbstractIn this paper, we introduce the definitions of shadowing and average shadowing properties for iterated function systems and give some examples characterizing these definitions. We prove that an iterated function system has the shadowing property if and only if the step skew product corresponding to the iterated function system has the shadowing property. Also, we study some notions such as transitivity, chain transitivity, chain mixing and mixing for iterated function systems.


2016 ◽  
Vol 102 (3) ◽  
pp. 435-443
Author(s):  
ZHEN-LIANG ZHANG ◽  
CHUN-YUN CAO

Let $\{f_{n}\}_{n\geq 1}$ be an infinite iterated function system on $[0,1]$ and let $\unicode[STIX]{x1D6EC}$ be its attractor. Then, for any $x\in \unicode[STIX]{x1D6EC}$, it corresponds to a sequence of integers $\{a_{n}(x)\}_{n\geq 1}$, called the digit sequence of $x$, in the sense that $$\begin{eqnarray}x=\lim _{n\rightarrow \infty }f_{a_{1}(x)}\circ \cdots \circ f_{a_{n}(x)}(1).\end{eqnarray}$$ In this note, we investigate the size of the points whose digit sequences are strictly increasing and of upper Banach density one, which improves the work of Tong and Wang and Zhang and Cao.


2013 ◽  
Vol 59 (2) ◽  
pp. 281-298
Author(s):  
Dan Dumitru

Abstract We consider a complete ε-chainable metric space (X, d) and an infinite iterated function system (IIFS) formed by an infinite family of (ε, φ)-functions on X. The aim of this paper is to prove the existence and uniqueness of the attractors of such infinite iterated systems (IIFS) and to give some sufficient conditions for these attractors to be connected. Similar results are obtained in the case when the IIFS is formed by an infinite family of uniformly ε-locally strong Meir-Keeler functions.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650019 ◽  
Author(s):  
DAVIDE LA TORRE ◽  
FRANKLIN MENDIVIL ◽  
EDWARD R. VRSCAY

We show that under certain hypotheses, an iterated function system on mappings (IFSM) is a contraction on the complete space of functions of bounded variation (BV). It then possesses a unique attractor of BV. Some BV-based inverse problems based on the Collage Theorem for contraction maps are considered.


Sign in / Sign up

Export Citation Format

Share Document