scholarly journals Approximating solutions of generalized pseudocontractive variational inequalities by admissible perturbation type iterative methods

2013 ◽  
Vol 22 (2) ◽  
pp. 237-241
Author(s):  
CRISTINA TICALA ◽  

In this paper we give the solvability class of generalized strongly nonlinear variational inequalities modified by the use of the new concept of admissible perturbation operator on nonempty closed convex sets in Hilbert spaces.

2017 ◽  
Vol 19 (4) ◽  
pp. 2383-2395
Author(s):  
Nguyen Buong ◽  
Pham Thi Thu Hoai ◽  
Nguyen Duong Nguyen

2016 ◽  
Vol 25 (1) ◽  
pp. 121-126
Author(s):  
CRISTINA TICALA ◽  

The aim of this paper is to prove some convergence theorems for a general Krasnoselskij type fixed point iterative method defined by means of the concept of admissible perturbation of a demicontractive operator in Hilbert spaces.


2016 ◽  
Vol 25 (1) ◽  
pp. 121-126
Author(s):  
CRISTINA TICALA ◽  

The aim of this paper is to prove some convergence theorems for a general Krasnoselskij type fixed point iterative method defined by means of the concept of admissible perturbation of a demicontractive operator in Hilbert spaces.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1915
Author(s):  
Lateef Olakunle Jolaoso ◽  
Maggie Aphane

Herein, we present a new parallel extragradient method for solving systems of variational inequalities and common fixed point problems for demicontractive mappings in real Hilbert spaces. The algorithm determines the next iterate by computing a computationally inexpensive projection onto a sub-level set which is constructed using a convex combination of finite functions and an Armijo line-search procedure. A strong convergence result is proved without the need for the assumption of Lipschitz continuity on the cost operators of the variational inequalities. Finally, some numerical experiments are performed to illustrate the performance of the proposed method.


2017 ◽  
Vol 33 (1) ◽  
pp. 09-26
Author(s):  
QAMRUL HASAN ANSARI ◽  
◽  
AISHA REHAN ◽  
◽  

Inspired by the recent work of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205–221], in this paper, we study generalized split feasibility problems (GSFPs) in the setting of Banach spaces. We propose iterative algorithms to compute the approximate solutions of such problems. The weak convergence of the sequence generated by the proposed algorithms is studied. As applications, we derive some algorithms and convergence results for some problems from nonlinear analysis, namely, split feasibility problems, equilibrium problems, etc. Our results generalize several known results in the literature including the results of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, SetValued Var. Anal., 23 (2015), 205–221].


Sign in / Sign up

Export Citation Format

Share Document