scholarly journals Fixing Numbers of Graphs and Groups

10.37236/128 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Courtney R. Gibbons ◽  
Joshua D. Laison

The fixing number of a graph $G$ is the smallest cardinality of a set of vertices $S$ such that only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing set of a group $\Gamma$ is the set of all fixing numbers of finite graphs with automorphism group $\Gamma$. Several authors have studied the distinguishing number of a graph, the smallest number of labels needed to label $G$ so that the automorphism group of the labeled graph is trivial. The fixing number can be thought of as a variation of the distinguishing number in which every label may be used only once, and not every vertex need be labeled. We characterize the fixing sets of finite abelian groups, and investigate the fixing sets of symmetric groups.

2012 ◽  
Vol 22 (01) ◽  
pp. 1250003 ◽  
Author(s):  
L. J. CORREDOR ◽  
M. A. GUTIERREZ

We find a set of generators for the automorphism group Aut G of a graph product G of finitely generated abelian groups entirely from a certain labeled graph. In addition, we find generators for the important subgroup Aut ⋆ G defined in [Automorphisms of graph products of abelian groups, to appear in Groups, Geometry and Dynamics]. We follow closely the plan of M. Laurence's paper [A generating set for the automorphism group of a graph group, J. London Math. Soc. (2)52(2) (1995) 318–334].


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Zhao Jinxing ◽  
Nan Jizhu

We study the dynamics of endomorphisms on a finite abelian group. We obtain the automorphism group for these dynamical systems. We also give criteria and algorithms to determine whether it is a fixed point system.


2020 ◽  
pp. 1-7
Author(s):  
Omar Tout

Abstract It is well known that the pair $(\mathcal {S}_n,\mathcal {S}_{n-1})$ is a Gelfand pair where $\mathcal {S}_n$ is the symmetric group on n elements. In this paper, we prove that if G is a finite group then $(G\wr \mathcal {S}_n, G\wr \mathcal {S}_{n-1}),$ where $G\wr \mathcal {S}_n$ is the wreath product of G by $\mathcal {S}_n,$ is a Gelfand pair if and only if G is abelian.


2018 ◽  
Vol 30 (4) ◽  
pp. 877-885
Author(s):  
Luise-Charlotte Kappe ◽  
Patrizia Longobardi ◽  
Mercede Maj

Abstract It is well known that the set of commutators in a group usually does not form a subgroup. A similar phenomenon occurs for the set of autocommutators. There exists a group of order 64 and nilpotency class 2, where the set of autocommutators does not form a subgroup, and this group is of minimal order with this property. However, for finite abelian groups, the set of autocommutators is always a subgroup. We will show in this paper that this is no longer true for infinite abelian groups. We characterize finitely generated infinite abelian groups in which the set of autocommutators does not form a subgroup and show that in an infinite abelian torsion group the set of commutators is a subgroup. Lastly, we investigate torsion-free abelian groups with finite automorphism group and we study whether the set of autocommutators forms a subgroup in those groups.


2019 ◽  
Vol 101 (2) ◽  
pp. 201-206
Author(s):  
MARIUS TĂRNĂUCEANU

We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


2016 ◽  
Vol 58 ◽  
pp. 181-202 ◽  
Author(s):  
R. Balasubramanian ◽  
Gyan Prakash ◽  
D.S. Ramana

Sign in / Sign up

Export Citation Format

Share Document