scholarly journals Separability Number and Schurity Number of Coherent Configurations

10.37236/1509 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Sergei Evdokimov ◽  
Ilia Ponomarenko

To each coherent configuration (scheme) ${\cal C}$ and positive integer $m$ we associate a natural scheme $\widehat{\cal C}^{(m)}$ on the $m$-fold Cartesian product of the point set of ${\cal C}$ having the same automorphism group as ${\cal C}$. Using this construction we define and study two positive integers: the separability number $s({\cal C})$ and the Schurity number $t({\cal C})$ of ${\cal C}$. It turns out that $s({\cal C})\le m$ iff ${\cal C}$ is uniquely determined up to isomorphism by the intersection numbers of the scheme $\widehat{\cal C}^{(m)}$. Similarly, $t({\cal C})\le m$ iff the diagonal subscheme of $\widehat{\cal C}^{(m)}$ is an orbital one. In particular, if ${\cal C}$ is the scheme of a distance-regular graph $\Gamma$, then $s({\cal C})=1$ iff $\Gamma$ is uniquely determined by its parameters whereas $t({\cal C})=1$ iff $\Gamma$ is distance-transitive. We show that if ${\cal C}$ is a Johnson, Hamming or Grassmann scheme, then $s({\cal C})\le 2$ and $t({\cal C})=1$. Moreover, we find the exact values of $s({\cal C})$ and $t({\cal C})$ for the scheme ${\cal C}$ associated with any distance-regular graph having the same parameters as some Johnson or Hamming graph. In particular, $s({\cal C})=t({\cal C})=2$ if ${\cal C}$ is the scheme of a Doob graph. In addition, we prove that $s({\cal C})\le 2$ and $t({\cal C})\le 2$ for any imprimitive 3/2-homogeneous scheme. Finally, we show that $s({\cal C})\le 4$, whenever ${\cal C}$ is a cyclotomic scheme on a prime number of points.

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Jia Huang

The Norton product is defined on each eigenspace of a distance regular graph by the orthogonal projection of the entry-wise product. The resulting algebra, known as the Norton algebra, is a commutative nonassociative algebra that is useful in group theory due to its interesting automorphism group. We provide a formula for the Norton product on each eigenspace of a Hamming graph using linear characters. We construct a large subgroup of automorphisms of the Norton algebra of a Hamming graph and completely describe the automorphism group in some cases. We also show that the Norton product on each eigenspace of a Hamming graph is as nonassociative as possible, except for some special cases in which it is either associative or equally as nonassociative as the so-called double minus operation previously studied by the author, Mickey, and Xu. Our results restrict to the hypercubes and extend to the halved and/or folded cubes, the bilinear forms graphs, and more generally, all Cayley graphs of finite abelian groups.


10.37236/1220 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Leonard H. Soicher

We describe a new distance-regular, but not distance-transitive, graph. This graph has intersection array $\{110,81,12;1,18,90\}$, and automorphism group $M_{22}\colon 2$.


Sign in / Sign up

Export Citation Format

Share Document