coherent configuration
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Vol 27 (01) ◽  
pp. 1-10
Author(s):  
Keiji Ito ◽  
Akihiro Munemasa

For fiber-commutative coherent configurations, we show that Krein parameters can be defined essentially uniquely. As a consequence, the general Krein condition reduces to positive semidefiniteness of finitely many matrices determined by the parameters of a coherent configuration. We mention its implications in the coherent configuration defined by a generalized quadrangle. We also simplify the absolute bound using the matrices of Krein parameters.


2016 ◽  
Vol 84 (1-2) ◽  
pp. 203-221
Author(s):  
Mikhail Klin ◽  
Matan Ziv-Av

2007 ◽  
Vol 28 (7) ◽  
pp. 1994-2025 ◽  
Author(s):  
M. Klin ◽  
M. Muzychuk ◽  
C. Pech ◽  
A. Woldar ◽  
P.-H. Zieschang

10.37236/1509 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Sergei Evdokimov ◽  
Ilia Ponomarenko

To each coherent configuration (scheme) ${\cal C}$ and positive integer $m$ we associate a natural scheme $\widehat{\cal C}^{(m)}$ on the $m$-fold Cartesian product of the point set of ${\cal C}$ having the same automorphism group as ${\cal C}$. Using this construction we define and study two positive integers: the separability number $s({\cal C})$ and the Schurity number $t({\cal C})$ of ${\cal C}$. It turns out that $s({\cal C})\le m$ iff ${\cal C}$ is uniquely determined up to isomorphism by the intersection numbers of the scheme $\widehat{\cal C}^{(m)}$. Similarly, $t({\cal C})\le m$ iff the diagonal subscheme of $\widehat{\cal C}^{(m)}$ is an orbital one. In particular, if ${\cal C}$ is the scheme of a distance-regular graph $\Gamma$, then $s({\cal C})=1$ iff $\Gamma$ is uniquely determined by its parameters whereas $t({\cal C})=1$ iff $\Gamma$ is distance-transitive. We show that if ${\cal C}$ is a Johnson, Hamming or Grassmann scheme, then $s({\cal C})\le 2$ and $t({\cal C})=1$. Moreover, we find the exact values of $s({\cal C})$ and $t({\cal C})$ for the scheme ${\cal C}$ associated with any distance-regular graph having the same parameters as some Johnson or Hamming graph. In particular, $s({\cal C})=t({\cal C})=2$ if ${\cal C}$ is the scheme of a Doob graph. In addition, we prove that $s({\cal C})\le 2$ and $t({\cal C})\le 2$ for any imprimitive 3/2-homogeneous scheme. Finally, we show that $s({\cal C})\le 4$, whenever ${\cal C}$ is a cyclotomic scheme on a prime number of points.


10.37236/1363 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Mikhail E. Muzychuk ◽  
Gottfried Tinhofer

A circulant graph $G$ of order $n$ is a Cayley graph over the cyclic group ${\bf Z}_n.$ Equivalently, $G$ is circulant iff its vertices can be ordered such that the corresponding adjacency matrix becomes a circulant matrix. To each circulant graph we may associate a coherent configuration ${\cal A}$ and, in particular, a Schur ring ${\cal S}$ isomorphic to ${\cal A}$. ${\cal A}$ can be associated without knowing $G$ to be circulant. If $n$ is prime, then by investigating the structure of ${\cal A}$ either we are able to find an appropriate ordering of the vertices proving that $G$ is circulant or we are able to prove that a certain necessary condition for $G$ being circulant is violated. The algorithm we propose in this paper is a recognition algorithm for cyclic association schemes. It runs in time polynomial in $n$.


Sign in / Sign up

Export Citation Format

Share Document