scholarly journals Circular Chromatic Number of Planar Graphs of Large Odd Girth

10.37236/1569 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuding Zhu

It was conjectured by Jaeger that $4k$-edge connected graphs admit a $(2k+1, k)$-flow. The restriction of this conjecture to planar graphs is equivalent to the statement that planar graphs of girth at least $4k$ have circular chromatic number at most $2+ {{1}\over {k}}$. Even this restricted version of Jaeger's conjecture is largely open. The $k=1$ case is the well-known Grötzsch 3-colour theorem. This paper proves that for $k \geq 2$, planar graphs of odd girth at least $8k-3$ have circular chromatic number at most $2+{{1}\over {k}}$.

10.37236/9938 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Reza Naserasr ◽  
Zhouningxin Wang ◽  
Xuding Zhu

A signed graph is a pair $(G, \sigma)$, where $G$ is a graph (loops and multi edges allowed) and $\sigma: E(G) \to \{+, -\}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, \sigma)$ with no positive loop, a circular $r$-coloring of $(G, \sigma)$ is an assignment $\psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $\sigma(e)=+$, then $\psi(u)$ and $\psi(v)$ have distance at least $1$, and if $\sigma(e)=-$, then $\psi(v)$ and the antipodal of $\psi(u)$ have distance at least $1$. The circular chromatic number $\chi_c(G, \sigma)$ of a signed graph $(G, \sigma)$ is the infimum of those $r$ for which $(G, \sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $\max\{\chi_c(G, \sigma): \sigma \text{ is a signature of $G$}\}$.  We study basic properties of circular coloring of signed graphs and develop tools for calculating $\chi_c(G, \sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular,  we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+\frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera. 


10.37236/573 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Meysam Alishahi ◽  
Ali Taherkhani ◽  
Carsten Thomassen

It was conjectured in [S. Akbari, F. Khaghanpoor, and S. Moazzeni. Colorful paths in vertex coloring of graphs. Preprint] that, if $G$ is a connected graph distinct from $C_7$, then there is a $\chi(G)$-coloring of $G$ in which every vertex $v\in V(G)$ is an initial vertex of a path $P$ with $\chi(G)$ vertices whose colors are different. In [S. Akbari, V. Liaghat, and A. Nikzad. Colorful paths in vertex coloring of graphs. Electron. J. Combin. 18(1): P17, 9pp, 2011] this was proved with $\lfloor\frac{\chi(G)}{2} \rfloor $ vertices instead of $\chi(G)$ vertices. We strengthen this to $\chi(G)-1$ vertices. We also prove that every connected graph with at least one edge has a proper $k$-coloring (for some $k$) such that every vertex of color $i$ has a neighbor of color $i+1$ (mod $k$). $C_5$ shows that $k$ may have to be greater than the chromatic number. However, if the graph is connected, infinite and locally finite, and has finite chromatic number, then the $k$-coloring exists for every $k \geq \chi(G)$. In fact, the $k$-coloring can be chosen such that every vertex is a starting vertex of an infinite path such that the color increases by $1$ (mod $k$) along each edge. The method is based on the circular chromatic number $\chi_c(G)$. In particular, we verify the above conjecture for all connected graphs whose circular chromatic number equals the chromatic number.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


2021 ◽  
Vol 41 (2) ◽  
pp. 441
Author(s):  
Robert Janczewski ◽  
Anna Maria Trzaskowska ◽  
Krzysztof Turowski

2003 ◽  
Vol 44 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Hossein Hajiabolhassan ◽  
Xuding Zhu

2020 ◽  
Vol 283 ◽  
pp. 275-291
Author(s):  
Wanshun Yang ◽  
Weifan Wang ◽  
Yiqiao Wang

1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050061 ◽  
Author(s):  
Hilal A. Ganie

For a simple connected graph [Formula: see text] of order [Formula: see text] having distance Laplacian eigenvalues [Formula: see text], the distance Laplacian energy [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the Wiener index of [Formula: see text]. We obtain the distance Laplacian spectrum of the joined union of graphs [Formula: see text] in terms of their distance Laplacian spectrum and the spectrum of an auxiliary matrix. As application, we obtain the distance Laplacian spectrum of the lexicographic product of graphs. We study the distance Laplacian energy of connected graphs with given chromatic number [Formula: see text]. We show that among all connected graphs with chromatic number [Formula: see text] the complete [Formula: see text]-partite graph has the minimum distance Laplacian energy. Further, we discuss the distribution of distance Laplacian eigenvalues around average transmission degree [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document