scholarly journals Identifying Codes with Small Radius in Some Infinite Regular Graphs

10.37236/1628 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Irène Charon ◽  
Olivier Hudry ◽  
Antoine Lobstein

Let $G=(V,E)$ be a connected undirected graph and $S$ a subset of vertices. If for all vertices $v \in V$, the sets $B_r(v) \cap S$ are all nonempty and different, where $B_r(v)$ denotes the set of all points within distance $r$ from $v$, then we call $S$ an $r$-identifying code. We give constructive upper bounds on the best possible density of $r$-identifying codes in four infinite regular graphs, for small values of $r$.


10.37236/1583 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Irène Charon ◽  
Iiro Honkala ◽  
Olivier Hudry ◽  
Antoine Lobstein

Consider a connected undirected graph $G=(V,E)$ and a subset of vertices $C$. If for all vertices $v \in V$, the sets $B_r(v) \cap C$ are all nonempty and pairwise distinct, where $B_r(v)$ denotes the set of all points within distance $r$ from $v$, then we call $C$ an $r$-identifying code. We give general lower and upper bounds on the best possible density of $r$-identifying codes in three infinite regular graphs.



2019 ◽  
Vol 11 (02) ◽  
pp. 1950027
Author(s):  
R. Dhanalakshmi ◽  
C. Durairajan

We study about monotonicity of [Formula: see text]-identifying codes in binary Hamming space, q-ary Lee space and incomplete hypercube. Also, we give the lower bounds for [Formula: see text] where [Formula: see text] is the smallest cardinality among all [Formula: see text]-identifying codes in [Formula: see text] with respect to the Lee metric. We prove the existence of [Formula: see text]-identifying code in an incomplete hypercube. Also, we give the construction techniques for [Formula: see text]-identifying codes in the incomplete hypercubes in Secs. 4.1 and 4.2. Using these techniques, we give the tables (see Tables 1–6) of upper bounds for [Formula: see text] where [Formula: see text] is the smallest cardinality among all [Formula: see text]-identifying codes in an incomplete hypercube with [Formula: see text] processors. Also, we give the exact values of [Formula: see text] for small values of [Formula: see text] and [Formula: see text] (see Sec. 4.3).



10.37236/4562 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Camino Balbuena ◽  
Florent Foucaud ◽  
Adriana Hansberg

Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meeting these bounds.



10.37236/2036 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Florent Foucaud ◽  
Guillem Perarnau

An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If $\gamma^{\text{ID}}(G)$ denotes the minimum size of an identifying code of a graph $G$, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant $c$ such that if a connected graph $G$ with $n$ vertices and maximum degree $d$ admits an identifying code, then $\gamma^{\text{ID}}(G)\leq n-\tfrac{n}{d}+c$. We use probabilistic tools to show that for any $d\geq 3$, $\gamma^{\text{ID}}(G)\leq n-\tfrac{n}{\Theta(d)}$ holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove $\gamma^{\text{ID}}(G)\leq n-\tfrac{n}{\Theta(d^{3})}$. In a second part, we prove that in any graph $G$ of minimum degree $\delta$ and girth at least 5, $\gamma^{\text{ID}}(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n$. Using the former result, we give sharp estimates for the size of the minimum identifying code of random $d$-regular graphs, which is about $\tfrac{\log d}{d}n$.



10.37236/394 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan Martin ◽  
Brendon Stanton

An $r$-identifying code on a graph $G$ is a set $C\subset V(G)$ such that for every vertex in $V(G)$, the intersection of the radius-$r$ closed neighborhood with $C$ is nonempty and unique. On a finite graph, the density of a code is $|C|/|V(G)|$, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We present new lower bounds for densities of codes for some small values of $r$ in both the square and hexagonal grids.



10.37236/1760 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Arne Hoffmann ◽  
Lutz Volkmann

In this note we examine the connection between vertices of high eccentricity and the existence of $k$-factors in regular graphs. This leads to new results in the case that the radius of the graph is small ($\leq 3$), namely that a $d$-regular graph $G$ has all $k$-factors, for $k|V(G)|$ even and $k\le d$, if it has at most $2d+2$ vertices of eccentricity $>3$. In particular, each regular graph $G$ of diameter $\leq3$ has every $k$-factor, for $k|V(G)|$ even and $k\le d$.



2010 ◽  
Vol 02 (04) ◽  
pp. 643-654 ◽  
Author(s):  
MAXIM BABENKO ◽  
ALEXEY GUSAKOV ◽  
ILYA RAZENSHTEYN

A 2-matching in an undirected graph G = (VG, EG) is a function x: EG → {0, 1, 2} such that for each node v ∈ VG the sum of values x(e) for all edges e incident to v does not exceed 2. The size of x is the sum ∑e x(e). If {e ∈ EG|x(e) ≠ 0} contains no triangles then x is called triangle-free. Cornuéjols and Pulleyblank devised a combinatorial O(mn)-algorithm that finds a maximum triangle free 2-matching of size (hereinafter n ≔ |VG|, m ≔ |EG|) and also established a min-max theorem. We claim that this approach is, in fact, superfluous by demonstrating how these results may be obtained directly from the Edmonds–Gallai decomposition. Applying the algorithm of Micali and Vazirani we are able to find a maximum triangle-free 2-matching in [Formula: see text] time. Also we give a short self-contained algorithmic proof of the min-max theorem. Next, we consider the case of regular graphs. It is well-known that every regular graph admits a perfect 2-matching. One can easily strengthen this result and prove that every d-regular graph (for d ≥ 3) contains a perfect triangle-free 2-matching. We give the following algorithms for finding a perfect triangle-free 2-matching in a d-regular graph: an O(n)-algorithm for d = 3, an O(m + n3/2)-algorithm for d = 2k(k ≥ 2), and an O(n2)-algorithm for d = 2k + 1(k ≥ 2). We also prove that there exists a constant c > 1 such that every 3-regular graph contains at least cn perfect triangle-free 2-matchings.



2007 ◽  
Vol 53 (11) ◽  
pp. 4255-4260 ◽  
Author(s):  
Geoffrey Exoo ◽  
Tero Laihonen ◽  
Sanna Ranto


10.37236/846 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Attila Bernáth ◽  
Henning Bruhn

Degree constrained orientations are orientations of an (undirected) graph where the in-degree function satisfies given lower and upper bounds. For finite graphs Frank and Gyárfás (1976) gave a necessary and sufficient condition for the existence of such an orientation. We extend their result to countable graphs.



Author(s):  
Kathrin Hanauer ◽  
Franz J. Brandenburg ◽  
Christopher Auer
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document