scholarly journals Thue-like Sequences and Rainbow Arithmetic Progressions

10.37236/1660 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Jaroslaw Grytczuk

A sequence $u=u_{1}u_{2}...u_{n}$ is said to be nonrepetitive if no two adjacent blocks of $u$ are exactly the same. For instance, the sequence $a{\bf bcbc}ba$ contains a repetition $bcbc$, while $abcacbabcbac$ is nonrepetitive. A well known theorem of Thue asserts that there are arbitrarily long nonrepetitive sequences over the set $\{a,b,c\}$. This fact implies, via König's Infinity Lemma, the existence of an infinite ternary sequence without repetitions of any length. In this paper we consider a stronger property defined as follows. Let $k\geq 2$ be a fixed integer and let $C$ denote a set of colors (or symbols). A coloring $f:{\bf N}\rightarrow C$ of positive integers is said to be $k$-nonrepetitive if for every $r\geq 1$ each segment of $kr$ consecutive numbers contains a $k$-term rainbow arithmetic progression of difference $r$. In particular, among any $k$ consecutive blocks of the sequence $f=f(1)f(2)f(3)...$ no two are identical. By an application of the Lovász Local Lemma we show that the minimum number of colors in a $k$-nonrepetitive coloring is at most $2^{-1}e^{k(2k-1)/(k-1)^{2}}k^{2}(k-1)+1$. Clearly at least $k+1$ colors are needed but whether $O(k)$ suffices remains open. This and other types of nonrepetitiveness can be studied on other structures like graphs, lattices, Euclidean spaces, etc., as well. Unlike for the classical Thue sequences, in most of these situations non-constructive arguments seem to be unavoidable. A few of a range of open problems appearing in this area are presented at the end of the paper.

10.37236/696 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Jarosław Grytczuk ◽  
Jakub Kozik ◽  
Marcin Witkowski

A sequence $S=s_{1}s_{2}\ldots s_{n}$ is said to be nonrepetitive if no two adjacent blocks of $S$ are identical. In 1906 Thue proved that there exist arbitrarily long nonrepetitive sequences over $3$-element set of symbols. We study a generalization of nonrepetitive sequences involving arithmetic progressions. We prove that for every $k\geqslant 1$, there exist arbitrarily long sequences over at most $2k+10 \sqrt{k}$ symbols whose subsequences, indexed by arithmetic progressions with common differences from the set $\{1,2,\ldots ,k\}$, are nonrepetitive. This improves a previous bound of $e^{33}k$ obtained by Grytczuk. Our approach is based on a technique introduced recently by Grytczuk Kozik and Micek, which was originally inspired by a constructive proof of the Lovász Local Lemma due to Moser and Tardos. We also discuss some related problems that can be attacked by this method.


10.37236/551 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
William Gasarch ◽  
Bernhard Haeupler

The van der Waerden number $W(k,2)$ is the smallest integer $n$ such that every $2$-coloring of 1 to $n$ has a monochromatic arithmetic progression of length $k$. The existence of such an $n$ for any $k$ is due to van der Waerden but known upper bounds on $W(k,2)$ are enormous. Much effort was put into developing lower bounds on $W(k,2)$. Most of these lower bound proofs employ the probabilistic method often in combination with the Lovász Local Lemma. While these proofs show the existence of a $2$-coloring that has no monochromatic arithmetic progression of length $k$ they provide no efficient algorithm to find such a coloring. These kind of proofs are often informally called nonconstructive in contrast to constructive proofs that provide an efficient algorithm. This paper clarifies these notions and gives definitions for deterministic- and randomized-constructive proofs as different types of constructive proofs. We then survey the literature on lower bounds on $W(k,2)$ in this light. We show how known nonconstructive lower bound proofs based on the Lovász Local Lemma can be made randomized-constructive using the recent algorithms of Moser and Tardos. We also use a derandomization of Chandrasekaran, Goyal and Haeupler to transform these proofs into deterministic-constructive proofs. We provide greatly simplified and fully self-contained proofs and descriptions for these algorithms.


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


10.37236/2319 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Jakub Przybyło ◽  
Mariusz Woźniak

Let $c:E(G)\rightarrow [k]$ be  a colouring, not necessarily proper, of edges of a graph $G$. For a vertex $v\in V$, let $\overline{c}(v)=(a_1,\ldots,a_k)$, where $ a_i =|\{u:uv\in E(G),\;c(uv)=i\}|$, for $i\in [k].$ If we re-order the sequence $\overline{c}(v)$ non-decreasingly, we obtain a sequence $c^*(v)=(d_1,\ldots,d_k)$, called a palette of a vertex $v$. This can be viewed as the most comprehensive information about colours incident with $v$ which can be delivered by a person who is unable to name colours but distinguishes one from another. The smallest $k$ such that $c^*$ is a proper colouring of vertices of $G$ is called the colour-blind index of a graph $G$, and is denoted by dal$(G)$. We conjecture that there is a constant $K$ such that dal$(G)\leq K$ for every graph $G$ for which the parameter is well defined. As our main result we prove that $K\leq 6$ for regular graphs of sufficiently large degree, and for irregular graphs with $\delta (G)$ and $\Delta(G)$ satisfying certain conditions. The proofs are based on the Lopsided Lovász Local Lemma. We also show that $K=3$ for all regular bipartite graphs, and for complete graphs of order $n\geq 8$.


Author(s):  
Ioannis Giotis ◽  
Lefteris Kirousis ◽  
Kostas I. Psaromiligkos ◽  
Dimitrios M. Thilikos

2019 ◽  
Vol 66 (3) ◽  
pp. 1-31 ◽  
Author(s):  
Heng Guo ◽  
Mark Jerrum ◽  
Jingcheng Liu

2017 ◽  
Vol 49 (1) ◽  
pp. 1-23
Author(s):  
Christoph Hofer-Temmel

AbstractA point process isR-dependent if it behaves independently beyond the minimum distanceR. In this paper we investigate uniform positive lower bounds on the avoidance functions ofR-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer's point process, the uniqueR-dependent andR-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity andRto guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares a combinatorial structure with the hard-sphere model with radiusR, the uniqueR-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996).


Sign in / Sign up

Export Citation Format

Share Document