scholarly journals SUMS OF PRODUCTS OF CONGRUENCE CLASSES AND OF ARITHMETIC PROGRESSIONS

2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


10.37236/1660 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Jaroslaw Grytczuk

A sequence $u=u_{1}u_{2}...u_{n}$ is said to be nonrepetitive if no two adjacent blocks of $u$ are exactly the same. For instance, the sequence $a{\bf bcbc}ba$ contains a repetition $bcbc$, while $abcacbabcbac$ is nonrepetitive. A well known theorem of Thue asserts that there are arbitrarily long nonrepetitive sequences over the set $\{a,b,c\}$. This fact implies, via König's Infinity Lemma, the existence of an infinite ternary sequence without repetitions of any length. In this paper we consider a stronger property defined as follows. Let $k\geq 2$ be a fixed integer and let $C$ denote a set of colors (or symbols). A coloring $f:{\bf N}\rightarrow C$ of positive integers is said to be $k$-nonrepetitive if for every $r\geq 1$ each segment of $kr$ consecutive numbers contains a $k$-term rainbow arithmetic progression of difference $r$. In particular, among any $k$ consecutive blocks of the sequence $f=f(1)f(2)f(3)...$ no two are identical. By an application of the Lovász Local Lemma we show that the minimum number of colors in a $k$-nonrepetitive coloring is at most $2^{-1}e^{k(2k-1)/(k-1)^{2}}k^{2}(k-1)+1$. Clearly at least $k+1$ colors are needed but whether $O(k)$ suffices remains open. This and other types of nonrepetitiveness can be studied on other structures like graphs, lattices, Euclidean spaces, etc., as well. Unlike for the classical Thue sequences, in most of these situations non-constructive arguments seem to be unavoidable. A few of a range of open problems appearing in this area are presented at the end of the paper.


1974 ◽  
Vol 18 (2) ◽  
pp. 188-193 ◽  
Author(s):  
H. L. Abbott ◽  
A. C. Liu ◽  
J. Riddell

Let m, n and l be positive integers satisfying m ≦ n ≦ l ≦ 3. Denote by h(m, n, l) the largest integer with the property that from every n-subset of {1,2, …, m} one can select h(m, n, l) integers no l of which are in arithmetic progression. Let f(n, l) = h(n, n, l) and let g(n, l) = minmh(m, n, l). In what follows, by a P1-free set we shall mean a set of integers not containing an arithmetic progression of length l.


2008 ◽  
Vol 51 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ernie Croot

AbstractHow few three-term arithmetic progressions can a subset S ⊆ ℤN := ℤ/Nℤ have if |S| ≥ υN (that is, S has density at least υ)? Varnavides showed that this number of arithmetic progressions is at least c(υ)N2 for sufficiently large integers N. It is well known that determining good lower bounds for c(υ) > 0 is at the same level of depth as Erdös's famous conjecture about whether a subset T of the naturals where Σn∈T 1/n diverges, has a k-term arithmetic progression for k = 3 (that is, a three-term arithmetic progression).We answer a question posed by B. Green about how this minimial number of progressions oscillates for a fixed density υ as N runs through the primes, and as N runs through the odd positive integers.


1999 ◽  
Vol 42 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Tom C. Brown ◽  
Ronald L. Graham ◽  
Bruce M. Landman

AbstractAnalogues of van derWaerden’s theorem on arithmetic progressions are considered where the family of all arithmetic progressions, AP, is replaced by some subfamily of AP. Specifically, we want to know for which sets A, of positive integers, the following statement holds: for all positive integers r and k, there exists a positive integer n = w′(k, r) such that for every r-coloring of [1, n] there exists a monochromatic k-term arithmetic progression whose common difference belongs to A. We will call any subset of the positive integers that has the above property large. A set having this property for a specific fixed r will be called r-large. We give some necessary conditions for a set to be large, including the fact that every large set must contain an infinite number of multiples of each positive integer. Also, no large set {an : n = 1, 2,…} can have . Sufficient conditions for a set to be large are also given. We show that any set containing n-cubes for arbitrarily large n, is a large set. Results involving the connection between the notions of “large” and “2-large” are given. Several open questions and a conjecture are presented.


2011 ◽  
Vol 54 (2) ◽  
pp. 431-441 ◽  
Author(s):  
Shaofang Hong ◽  
Guoyou Qian

AbstractLet k ≥ 0, a ≥ 1 and b ≥ 0 be integers. We define the arithmetic function gk,a,b for any positive integer n byIf we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that was previously introduced by Farhi. Farhi proved that gk,1,0 is periodic and that k! is a period. Hong and Yang improved Farhi's period k! to lcm(1, 2, … , k) and conjectured that (lcm(1, 2, … , k, k + 1))/(k + 1) divides the smallest period of gk,1,0. Recently, Farhi and Kane proved this conjecture and determined the smallest period of gk,1,0. For the general integers a ≥ 1 and b ≥ 0, it is natural to ask the following interesting question: is gk,a,b periodic? If so, what is the smallest period of gk,a,b? We first show that the arithmetic function gk,a,b is periodic. Subsequently, we provide detailed p-adic analysis of the periodic function gk,a,b. Finally, we determine the smallest period of gk,a,b. Our result extends the Farhi–Kane Theorem from the set of positive integers to general arithmetic progressions.


2015 ◽  
Vol 65 (6) ◽  
Author(s):  
Jiantao Li ◽  
Xiankun Du

AbstractLet (a, a + d, a + 2d) be an arithmetic progression of positive integers. The following statements are proved:(1) If a | 2d, then (a, a + d, a + 2d) ∈ mdeg(Tame(ℂ(2) If a ∤ 2d and (a, a + d, a + 2d) ∉ {(4i, 5i, 6i), (4i, 7i, 10i) : i ∈ ℕ


2004 ◽  
Vol 47 (2) ◽  
pp. 191-205 ◽  
Author(s):  
G. Grätzer ◽  
E. T. Schmidt

AbstractThe congruences of a finite sectionally complemented lattice L are not necessarily uniform (any two congruence classes of a congruence are of the same size). To measure how far a congruence Θ of L is from being uniform, we introduce Spec Θ, the spectrum of Θ, the family of cardinalities of the congruence classes of Θ. A typical result of this paper characterizes the spectrum S = (mj | j < n) of a nontrivial congruence Θ with the following two properties:


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


Sign in / Sign up

Export Citation Format

Share Document