scholarly journals Nonexistence Results for Hadamard-like Matrices

10.37236/1842 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Justin D. Christian ◽  
Bryan L. Shader

The class of square $(0,1,-1)$-matrices whose rows are nonzero and mutually orthogonal is studied. This class generalizes the classes of Hadamard and Weighing matrices. We prove that if there exists an $n$ by $n$ $(0,1,-1)$-matrix whose rows are nonzero, mutually orthogonal and whose first row has no zeros, then $n$ is not of the form $p^k$, $2p^k$ or $3p$ where $p$ is an odd prime, and $k$ is a positive integer.


10.37236/1556 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Yury J. Ionin

Balanced generalized weighing matrices are applied for constructing a family of symmetric designs with parameters $(1+qr(r^{m+1}-1)/(r-1),r^{m},r^{m-1}(r-1)/q)$, where $m$ is any positive integer and $q$ and $r=(q^{d}-1)/(q-1)$ are prime powers, and a family of non-embeddable quasi-residual $2-((r+1)(r^{m+1}-1)/(r-1),r^{m}(r+1)/2,r^{m}(r-1)/2)$ designs, where $m$ is any positive integer and $r=2^{d}-1$, $3\cdot 2^{d}-1$ or $5\cdot 2^{d}-1$ is a prime power, $r\geq 11$.



2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Ebrahim Ghaderpour

Orthogonal designs and weighing matrices have many applications in areas such as coding theory, cryptography, wireless networking, and communication. In this paper, we first show that if positive integer k cannot be written as the sum of three integer squares, then there does not exist any skew-symmetric weighing matrix of order 4n and weight k, where n is an odd positive integer. Then we show that, for any square k, there is an integer N(k) such that, for each n≥N(k), there is a symmetric weighing matrix of order n and weight k. Moreover, we improve some of the asymptotic existence results for weighing matrices obtained by Eades, Geramita, and Seberry.



10.37236/1339 ◽  
1997 ◽  
Vol 5 (1) ◽  
Author(s):  
Yury J. Ionin

For every positive integer $m$, we construct a symmetric $(v,k,\lambda )$-design with parameters $v={{h((2h-1)^{2m}-1)}\over{h-1}}$, $k=h(2h-1)^{2m-1}$, and $\lambda =h(h-1)(2h-1)^{2m-2}$, where $h=\pm 3\cdot 2^d$ and $|2h-1|$ is a prime power. For $m\geq 2$ and $d\geq 1$, these parameter values were previously undecided. The tools used in the construction are balanced generalized weighing matrices and regular Hadamard matrices of order $9\cdot 4^d$.



2013 ◽  
Vol 1 (2) ◽  
pp. 177-191
Author(s):  
Roberto Padua ◽  
Rodel Azura ◽  
Mark Borres ◽  
Adriano Patac Jr. ◽  
◽  
...  


2018 ◽  
Vol 9 (12) ◽  
pp. 2165-2168
Author(s):  
Gopal Prajapati ◽  
Mithilesh Kumar Singh


10.37236/1725 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

Let $G$ be a graph. For a given positive integer $d$, let $f_G(d)$ denote the largest integer $t$ such that in every coloring of the edges of $G$ with two colors there is a monochromatic subgraph with minimum degree at least $d$ and order at least $t$. Let $f_G(d)=0$ in case there is a $2$-coloring of the edges of $G$ with no such monochromatic subgraph. Let $f(n,k,d)$ denote the minimum of $f_G(d)$ where $G$ ranges over all graphs with $n$ vertices and minimum degree at least $k$. In this paper we establish $f(n,k,d)$ whenever $k$ or $n-k$ are fixed, and $n$ is sufficiently large. We also consider the case where more than two colors are allowed.



2009 ◽  
Vol 52 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Muhammet Tamer Koşan

AbstractLet R be an associative ring with unity. Then R is said to be a right McCoy ring when the equation f (x)g(x) = 0 (over R[x]), where 0 ≠ f (x), g(x) ∈ R[x], implies that there exists a nonzero element c ∈ R such that f (x)c = 0. In this paper, we characterize some basic ring extensions of right McCoy rings and we prove that if R is a right McCoy ring, then R[x]/(xn) is a right McCoy ring for any positive integer n ≥ 2.



2021 ◽  
pp. 1-20
Author(s):  
K. PUSHPA ◽  
K. R. VASUKI

Abstract The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$ , for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).



Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.



Author(s):  
Salah Eddine Rihane ◽  
Alain Togbé

AbstractA repdigit is a positive integer that has only one distinct digit in its decimal expansion, i.e., a number of the form $$a(10^m-1)/9$$ a ( 10 m - 1 ) / 9 , for some $$m\ge 1$$ m ≥ 1 and $$1 \le a \le 9$$ 1 ≤ a ≤ 9 . Let $$\left( P_n\right) _{n\ge 0}$$ P n n ≥ 0 and $$\left( E_n\right) _{n\ge 0}$$ E n n ≥ 0 be the sequence of Padovan and Perrin numbers, respectively. This paper deals with repdigits that can be written as the products of consecutive Padovan or/and Perrin numbers.



Sign in / Sign up

Export Citation Format

Share Document