scholarly journals On the Unitary Cayley Graph of a Ring

10.37236/2214 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Dariush Kiani ◽  
Mohsen Molla Haji Aghaei

Let $R$ be a ring with identity. The unitary Cayley graph of a ring $R$, denoted by $G_{R}$, is the graph, whose vertex set is $R$, and in which $\{x,y\}$ is an edge if and only if $x-y$ is a unit of $R$. In this paper we find chromatic, clique and independence number of $G_{R}$, where $R$ is a finite ring. Also, we prove that if $G_{R} \simeq G_{S}$, then $G_{R/J_{R}} \simeq G_{S/J_{S}}$, where $\rm J_{R}$ and $\rm J_{S}$ are Jacobson radicals of $R$ and $S$, respectively. Moreover, we prove if $G_{R} \simeq G_{M_{n}(F)}$ then $R\simeq M_{n}(F)$, where $R$ is a ring and $F$ is a finite field. Finally, let $R$ and $S$ be finite commutative rings, we show that if $G_{R} \simeq G_{S}$, then $\rm R/ {J}_{R}\simeq S/J_{S}$.

2014 ◽  
Vol 13 (05) ◽  
pp. 1350152 ◽  
Author(s):  
YOTSANAN MEEMARK ◽  
BORWORN SUNTORNPOCH

Let R be a finite commutative ring with identity 1. The unitary Cayley graph of R, denoted by GR, is the graph whose vertex set is R and the edge set {{a, b} : a, b ∈ R and a - b ∈ R×}, where R× is the group of units of R. We define the unitary Cayley signed graph (or unitary Cayley sigraph in short) to be an ordered pair 𝒮R = (GR, σ), where GR is the unitary Cayley graph over R with signature σ : E(GR) → {1, -1} given by [Formula: see text] In this paper, we give a criterion on R for SR to be balanced (every cycle in 𝒮R is positive) and a criterion for its line graph L(𝒮R) to be balanced. We characterize all finite commutative rings with the property that the marked sigraph 𝒮R,μ is canonically consistent. Moreover, we give a characterization of all finite commutative rings where 𝒮R, η(𝒮R) and L(𝒮R) are hyperenergetic balanced.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


10.37236/963 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.


Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250179 ◽  
Author(s):  
A. AZIMI ◽  
A. ERFANIAN ◽  
M. FARROKHI D. G.

Let R be a commutative ring with nonzero identity. Then the Jacobson graph of R, denoted by 𝔍R, is defined as a graph with vertex set R\J(R) such that two distinct vertices x and y are adjacent if and only if 1 - xy is not a unit of R. We obtain some graph theoretical properties of 𝔍R including its connectivity, planarity and perfectness and we compute some of its numerical invariants, namely diameter, girth, dominating number, independence number and vertex chromatic number and give an estimate for its edge chromatic number.


2019 ◽  
Vol 19 (09) ◽  
pp. 2050173
Author(s):  
Xiaogang Liu ◽  
Chengxin Yan

Let [Formula: see text] denote the unitary homogeneous bi-Cayley graph over a finite commutative ring [Formula: see text]. In this paper, we determine the energy of [Formula: see text] and that of its complement and line graph, and characterize when such graphs are hyperenergetic. We also give a necessary and sufficient condition for [Formula: see text] (respectively, the complement of [Formula: see text], the line graph of [Formula: see text]) to be Ramanujan.


2014 ◽  
Vol 14 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Huadong Su ◽  
Kenta Noguchi ◽  
Yiqiang Zhou

Let R be a ring with identity. The unit graph of R, denoted by G(R), is a simple graph with vertex set R, and where two distinct vertices x and y are adjacent if and only if x + y is a unit in R. The genus of a simple graph G is the smallest nonnegative integer g such that G can be embedded into an orientable surface Sg. In this paper, we determine all isomorphism classes of finite commutative rings whose unit graphs have genus at most three.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850121
Author(s):  
K. Selvakumar ◽  
M. Subajini ◽  
M. J. Nikmehr

Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see text] is two.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


Sign in / Sign up

Export Citation Format

Share Document