scholarly journals The Coin Exchange Problem and the Structure of Cube Tilings

10.37236/2251 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Andrzej Piotr Kisielewicz ◽  
Krzysztof Przeslawski

It is shown that if $[0,1)^d+t$, $t\in T$, is a unit cube tiling of $\mathbb{R}^d$, then for every $x\in T$, $y\in \mathbb{R}^d$, and every positive integer $m$ the number $|T\cap (x+\mathbb{Z}^d)\cap([0,m)^d+ y)|$ is divisible by $m$. Furthermore, by a result of Coppersmith and Steinberger on cyclotomic arrays it is proven that for every finite discrete box $D=D_1\times\cdots\times D_d \subseteq x+\mathbb{Z}^d$ of size $m_1\times \cdots\times m_d$ the number $|D\cap T|$ is a linear combination of $m_1,\ldots, m_d$ with non-negative integer coefficients. Several consequences  are collected. A generalization is presented.      

2015 ◽  
Vol 11 (08) ◽  
pp. 2505-2511 ◽  
Author(s):  
Alessio Moscariello

We prove that the greatest positive integer that is not expressible as a linear combination with integer coefficients of elements of the set {n2, (n + 1)2, …} is asymptotically O(n2), verifying thus a conjecture of Dutch and Rickett. Furthermore, we ask a question on the representation of integers as sum of four large squares.


10.37236/9435 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Kyungyong Lee ◽  
George D. Nasr ◽  
Jamie Radcliffe

Let $\rho$ be a non-negative integer. A $\rho$-removed uniform matroid is a matroid obtained from a uniform matroid by removing a collection of $\rho$ disjoint bases. We present a combinatorial formula for Kazhdan–Lusztig polynomials of $\rho$-removed uniform matroids, using skew Young Tableaux. Even for uniform matroids, our formula is new, gives manifestly positive integer coefficients, and is more manageable than known formulas.


10.37236/115 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Norbert Seifter ◽  
Vladimir I. Trofimov

In this paper we investigate reachability relations on the vertices of digraphs. If $W$ is a walk in a digraph $D$, then the height of $W$ is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed opposite to their orientation. Two vertices $u,v\in V(D)$ are $R_{a,b}$-related if there exists a walk of height $0$ between $u$ and $v$ such that the height of every subwalk of $W$, starting at $u$, is contained in the interval $[a,b]$, where $a$ ia a non-positive integer or $a=-\infty$ and $b$ is a non-negative integer or $b=\infty$. Of course the relations $R_{a,b}$ are equivalence relations on $V(D)$. Factorising digraphs by $R_{a,\infty}$ and $R_{-\infty,b}$, respectively, we can only obtain a few different digraphs. Depending upon these factor graphs with respect to $R_{-\infty,b}$ and $R_{a,\infty}$ it is possible to define five different "basic relation-properties" for $R_{-\infty,b}$ and $R_{a,\infty}$, respectively. Besides proving general properties of the relations $R_{a,b}$, we investigate the question which of the "basic relation-properties" with respect to $R_{-\infty,b}$ and $R_{a,\infty}$ can occur simultaneously in locally finite connected transitive digraphs. Furthermore we investigate these properties for some particular subclasses of locally finite connected transitive digraphs such as Cayley digraphs, digraphs with one, with two or with infinitely many ends, digraphs containing or not containing certain directed subtrees, and highly arc transitive digraphs.


10.37236/7387 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Stokke

The classical Pieri formula gives a combinatorial rule for decomposing the product of a Schur function and a complete homogeneous symmetric polynomial as a linear combination of Schur functions with integer coefficients. We give a Pieri rule for describing the product of an orthosymplectic character and an orthosymplectic character arising from a one-row partition. We establish that the orthosymplectic Pieri rule coincides with Sundaram's Pieri rule for symplectic characters and that orthosymplectic characters and symplectic characters obey the same product rule. 


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


1954 ◽  
Vol 6 ◽  
pp. 449-454 ◽  
Author(s):  
Emma Lehmer

It has been shown by Dickson (1) that if (i, j)8 is the number of solutions of (mod p),then 64(i,j)8 is expressible for each i,j, as a linear combination with integer coefficients of p, x, y, a, and b where,anda ≡ b ≡ 1 (mod 4),while the sign of y and b depends on the choice of the primitive root g. There are actually four sets of such formulas depending on whether p is of the form 16n + 1 or 16n + 9 and whether 2 is a quartic residue or not.


1971 ◽  
Vol 3 (02) ◽  
pp. 200-201 ◽  
Author(s):  
Norman C. Severo

Let v be a positive integer and for each k = 1, · · ·, v let m k and N k be a positive and a non-negative integer, respectively. Denote by S'N k ,m k the set of (m k + 1) -tuples r k = (r k ,m k , · · ·, r k,1, r k,0) having non-negative components summing to N k , and by X k (t) = (X k,m k (t), · · ·, X k,1(t), X k ,0(t)) an (m k + 1)-tuple random variable taking on values only from the set S′ N k ,m k .


2017 ◽  
Vol 17 (2) ◽  
pp. 203-230 ◽  
Author(s):  
Andrzej P. Kisielewicz

AbstractA cube tiling of ℝd is a family of axis-parallel pairwise disjoint cubes [0,1)d + T = {[0,1)d+t : t ∈ T} that cover ℝd. Two cubes [0,1)d + t, [0,1)d + s are called a twin pair if their closures have a complete facet in common. In 1930, Keller conjectured that in every cube tiling of ℝd there is a twin pair. Keller's conjecture is true for dimensions d ≤ 6 and false for all dimensions d ≥ 8. For d = 7 the conjecture is still open. Let x ∈ ℝd, i ∈ [d], and let L(T, x, i) be the set of all ith coordinates ti of vectors t ∈ T such that ([0,1)d+t) ∩ ([0,1]d+x) ≠ ø and ti ≤ xi. Let r−(T) = minx∈ℝd max1≤i≤d|L(T,x,i)| and r+(T) = maxx∈ℝd max1≤i≤d|L(T,x,i)|. It is known that Keller's conjecture is true in dimension seven for cube tilings [0,1)7 + T for which r−(T) ≤ 2. In the present paper we show that it is also true for d = 7 if r+(T) ≥ 6. Thus, if [0,1)d + T is a counterexample to Keller's conjecture in dimension seven, then r−(T), r+(T) ∈ {3, 4, 5}.


1968 ◽  
Vol 15 (6) ◽  
pp. 525-528
Author(s):  
Warren H. Hill

One of the pedagogical pitfalls involved in teaching the multiplication of integers is the scarcity of physical models that can be used to illustrate their product. This problem becomes even more acute if a phyiscal model that makes use of a number line is desired. If the students have previously encountered the operations of addition and subtraction of integers using a number line, then the desirability of developing the operation of multiplication in a similar setting is obvious. Many of the more common physical models that can be used to represent the product of positive and negative integers are unsuitable for interpretation on a number line. Partial success is possible in the cases of the product of two positive integers and the product of a positive and a negative integer. But, how does one illustrate that the product of two negative integers is equal to a positive integer?


2011 ◽  
Vol 07 (06) ◽  
pp. 1603-1614 ◽  
Author(s):  
BYEONG-KWEON OH

For a positive integer d and a non-negative integer a, let Sd,a be the set of all integers of the form dn + a for any non-negative integer n. A (positive definite integral) quadratic form f is said to be Sd,a-universal if it represents all integers in the set Sd, a, and is said to be Sd,a-regular if it represents all integers in the non-empty set Sd,a ∩ Q((f)), where Q(gen(f)) is the set of all integers that are represented by the genus of f. In this paper, we prove that there is a polynomial U(x,y) ∈ ℚ[x,y] (R(x,y) ∈ ℚ[x,y]) such that the discriminant df for any Sd,a-universal (Sd,a-regular) ternary quadratic forms is bounded by U(d,a) (respectively, R(d,a)).


Sign in / Sign up

Export Citation Format

Share Document