scholarly journals On the Characteristic Polynomial of $n$-Cayley Digraphs

10.37236/3105 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Majid Arezoomand ◽  
Bijan Taeri

A digraph $\Gamma$ is called $n$-Cayley digraph over a group $G$‎, ‎if there exists a semiregular subgroup $R_G$ of Aut$(\Gamma)$ isomorphic to $G$ with $n$ orbits‎. ‎In this paper‎, ‎we represent the adjacency matrix of $\Gamma$ as a diagonal block‎ ‎matrix in terms of irreducible representations of $G$ and determine its characteristic polynomial‎. ‎As corollaries of this result we find‎:  ‎the spectrum of  semi-Cayley graphs over abelian groups‎, ‎a relation between the characteristic polynomial of an $n$-Cayley graph and its complement‎, ‎and   the spectrum of‎ ‎Calye graphs over groups with cyclic subgroups‎. ‎Finally we determine the eigenspace of $n$-Cayley digraphs and their main eigenvalues‎.

2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Po-Shen Loh ◽  
Leonard J. Schulman

International audience In Random Cayley Graphs and Expanders, N. Alon and Y. Roichman proved that for every ε > 0 there is a finite c(ε ) such that for any sufficiently large group G, the expected value of the second largest (in absolute value) eigenvalue of the normalized adjacency matrix of the Cayley graph with respect to c(ε ) log |G| random elements is less than ε . We reduce the number of elements to c(ε )log D(G) (for the same c), where D(G) is the sum of the dimensions of the irreducible representations of G. In sufficiently non-abelian families of groups (as measured by these dimensions), log D(G) is asymptotically (1/2)log|G|. As is well known, a small eigenvalue implies large graph expansion (and conversely); see Tanner84 and AlonMilman84-2,AlonMilman84-1. For any specified eigenvalue or expansion, therefore, random Cayley graphs (of sufficiently non-abelian groups) require only half as many edges as was previously known.


10.37236/1815 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Zeph Landau ◽  
Alexander Russell

We give a simple proof of the Alon–Roichman theorem, which asserts that the Cayley graph obtained by selecting $c_\varepsilon \log |G|$ elements, independently and uniformly at random, from a finite group $G$ has expected second eigenvalue no more than $\varepsilon$; here $c_\varepsilon$ is a constant that depends only on $\varepsilon$. In particular, such a graph is an expander with constant probability. Our new proof has three advantages over the original proof: (i.) it is extremely simple, relying only on the decomposition of the group algebra and tail bounds for operator-valued random variables, (ii.) it shows that the $\log |G|$ term may be replaced with $\log D$, where $D \leq |G|$ is the sum of the dimensions of the irreducible representations of $G$, and (iii.) it establishes the result above with a smaller constant $c_\varepsilon$.


2020 ◽  
pp. 1-6
Author(s):  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

A Cayley graph of a finite group G with respect to a subset S of G is a graph where the vertices of the graph are the elements of the group and two distinct vertices x and y are adjacent to each other if xy−1 is in the subset S. The subset of the Cayley graph is inverse closed and does not include the identity of the group. For a simple finite graph, the energy of a graph can be determined by summing up the positive values of the eigenvalues of the adjacency matrix of the graph. In this paper, the graph being studied is the Cayley graph of symmetric group of order 24 where S is the subset of S4 of valency up to two. From the Cayley graphs, the eigenvalues are calculated by constructing the adjacency matrix of the graphs and by using some properties of special graphs. Finally, the energy of the respected Cayley graphs is computed and presented. Keywords: energy of graph; cayley graph; symmetric groups


MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a finite group and S be a subset of G where S does not include the identity of G and is inverse closed. A Cayley graph of a group G with respect to the subset S is a graph where its vertices are the elements of G and two vertices a and b are connected if ab^(−1) is in the subset S. The energy of a Cayley graph is the sum of all absolute values of the eigenvalues of its adjacency matrix. In this paper, we consider a specific subset S = {b, ab, . . . , a^(n−1)b} for dihedral group of order 2n, where n is greater or equal to 3 and find the Cayley graph with respect to the set. We also calculate the eigenvalues and compute the energy of the respected Cayley graphs. Finally, the generalization of the energy of the respected Cayley graphs is found.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Monu Kadyan ◽  
Bikash Bhattacharjya

A mixed graph is said to be integral if all the eigenvalues of its Hermitian adjacency matrix are integer. Let $\Gamma$ be an abelian group. The mixed Cayley graph $Cay(\Gamma,S)$ is a mixed graph on the vertex set $\Gamma$ and edge set $\left\{ (a,b): b-a\in S \right\}$, where $0\not\in S$. We characterize integral mixed Cayley graph $Cay(\Gamma,S)$ over an abelian group $\Gamma$ in terms of its connection set $S$.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


Sign in / Sign up

Export Citation Format

Share Document