scholarly journals Bipartite Graphs whose Squares are not Chromatic-Choosable

10.37236/4343 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Seog-Jin Kim ◽  
Boram Park

The square $G^2$ of a graph $G$ is the graph defined on $V(G)$ such that two vertices $u$ and $v$ are adjacent in $G^2$ if the distance between $u$ and $v$ in $G$ is at most 2. Let $\chi(H)$ and $\chi_{\ell}(H)$ be the chromatic number and the list chromatic number of $H$, respectively. A graph $H$ is called chromatic-choosable if $\chi_{\ell} (H) = \chi(H)$. It is an interesting problem to find graphs that are chromatic-choosable.Motivated by the List Total Coloring Conjecture, Kostochka and Woodall (2001) proposed the List Square Coloring Conjecture which states that $G^2$ is chromatic-choosable for every graph $G$. Recently, Kim and Park showed that the List Square Coloring Conjecture does not hold in general by finding a family of graphs whose squares are complete multipartite graphs and are not chromatic choosable. It is a well-known fact that the List Total Coloring Conjecture is true if the List Square Coloring Conjecture holds for special class of bipartite graphs. Hence a natural question is whether $G^2$ is chromatic-choosable or not for every bipartite graph $G$.In this paper, we give a bipartite graph $G$ such that $\chi_{\ell} (G^2) \neq \chi(G^2)$. Moreover, we show that the value $\chi_{\ell}(G^2) - \chi(G^2)$ can be arbitrarily large.


2000 ◽  
Vol 9 (4) ◽  
pp. 375-380 ◽  
Author(s):  
M. VOIGT

Let G = (V, E) be a graph with n vertices, chromatic number χ(G) and list chromatic number χ[lscr ](G). Suppose each vertex of V(G) is assigned a list of t colours. Albertson, Grossman and Haas [1] conjectured that at least [formula here] vertices can be coloured properly from these lists.Albertson, Grossman and Haas [1] and Chappell [3] proved partial results concerning this conjecture. This paper presents algorithms that colour at least the number of vertices given in the bounds of Albertson, Grossman and Haas, and Chappell. In particular, it follows that the conjecture is valid for all bipartite graphs and that, for every bipartite graph and every assignment of lists with t colours in each list where 0 [les ] t [les ] χ[lscr ](G), it is possible to colour at least (1 − (1/2)t)n vertices in polynomial time. Thus, if G is bipartite and [Lscr ] is a list assignment with [mid ]L(v)[mid ] [ges ] log2n for all v ∈ V, then G is [Lscr ]-list colourable in polynomial time.



Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.



Author(s):  
J. Geetha ◽  
K. Somasundaram ◽  
Hung-Lin Fu

The total chromatic number [Formula: see text] is the least number of colors needed to color the vertices and edges of a graph [Formula: see text] such that no incident or adjacent elements (vertices or edges) receive the same color. Behzad and Vizing proposed a well-known total coloring conjecture (TCC): [Formula: see text], where [Formula: see text] is the maximum degree of [Formula: see text]. For the powers of cycles, Campos and de Mello proposed the following conjecture: Let [Formula: see text] denote the graphs of powers of cycles of order [Formula: see text] and length [Formula: see text] with [Formula: see text]. Then, [Formula: see text] In this paper, we prove the Campos and de Mello’s conjecture for some classes of powers of cycles. Also, we prove the TCC for complement of powers of cycles.



2013 ◽  
Vol 475-476 ◽  
pp. 379-382
Author(s):  
Mu Chun Li ◽  
Shuang Li Wang ◽  
Li Li Wang

Using the analysis method and the function of constructing the Smarandachely adjacent vertex distinguishing E-total coloring function, the Smarandachely adjacent vertex distinguishing E-total coloring of join graphs are mainly discussed, and the Smarandachely adjacent vertex distinguishing E-total chromatic number of join graph are obtained. The Smarandachely adjacent vertex distinguishing E-total coloring conjecture is further validated.





10.37236/9849 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Preston Cranford ◽  
Anton Dochtermann ◽  
Evan Haithcock ◽  
Joshua Marsh ◽  
Suho Oh ◽  
...  

A well-known conjecture of Richard Stanley posits that the $h$-vector of the independence complex of a matroid is a pure ${\mathcal O}$-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified 'coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs.  We study the $h$-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of '$2$-weighted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the Möbius coinvariant (the last nonzero entry of the $h$-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially $2$-weighted forests gives rise to a pure multicomplex whose face count recovers the $h$-vector, establishing Stanley's conjecture for this class of matroids.  We also discuss how our constructions relate to a combinatorial strengthening of Stanley's Conjecture (due to Klee and Samper) for this class of matroids.





1982 ◽  
Vol 107 (4) ◽  
pp. 425-427
Author(s):  
Zdeněk Andres ◽  
Bohdan Zelinka


2019 ◽  
Vol 11 (01) ◽  
pp. 1950014
Author(s):  
Radhakrishnan Vignesh ◽  
Jayabalan Geetha ◽  
Kanagasabapathi Somasundaram

A total coloring of a graph [Formula: see text] is an assignment of colors to the elements of the graph [Formula: see text] such that no adjacent vertices and edges receive the same color. The total chromatic number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any simple graph [Formula: see text], [Formula: see text], where [Formula: see text] is the maximum degree of [Formula: see text]. In this paper, we prove the tight bound of the total coloring conjecture for the three types of corona products (vertex, edge and neighborhood) of graphs.



Sign in / Sign up

Export Citation Format

Share Document