scholarly journals A Note on Statistical Averages for Oscillating Tableaux

10.37236/4641 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Sam Hopkins ◽  
Ingrid Zhang

Oscillating tableaux are certain walks in Young's lattice of partitions; they generalize standard Young tableaux. The shape of an oscillating tableau is the last partition it visits and the length of an oscillating tableau is the number of steps it takes. We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all the partitions that it visits.  We show that the average weight of all oscillating tableaux of shape $\lambda$ and length $|\lambda|+2n$ (where $|\lambda|$ denotes the size of $\lambda$ and $n \in \mathbb{N}$) has a surprisingly simple formula: it is a quadratic polynomial in $|\lambda|$ and $n$. Our proof via the theory of differential posets is largely computational. We suggest how the homomesy paradigm of Propp and Roby may lead to a more conceptual proof of this result and reveal a hidden symmetry in the set of perfect matchings.


10.37236/6888 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Martha Yip

The set of $n$ by $n$ upper-triangular nilpotent matrices with entries in a finite field $\mathbb{F}_q$ has Jordan canonical forms indexed by partitions $\lambda \vdash n$. We present a combinatorial formula for computing the number $F_\lambda(q)$ of matrices of Jordan type $\lambda$ as a weighted sum over standard Young tableaux. We construct a bijection between paths in a modified version of Young's lattice and non-attacking rook placements, which leads to a refinement of the formula for $F_\lambda(q)$.



10.37236/3579 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
James Propp ◽  
Tom Roby

Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind  that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.  



2021 ◽  
Vol 344 (7) ◽  
pp. 112395
Author(s):  
Rosena R.X. Du ◽  
Jingni Yu


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.



10.37236/6466 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Ping Sun

Let $g_{n_1,n_2}$ be the number of standard Young tableau of truncated shifted shape with $n_1$ rows and $n_2$ boxes in each row. By using the integral method this paper derives the recurrence relations of $g_{3,n}$, $g_{n,4}$ and $g_{n,5}$ respectively. Specifically, $g_{n,4}$ is the $(2n-1)$-st Pell number.



10.37236/3890 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Ping Sun

In this paper the number of standard Young tableaux (SYT) is evaluated by the methods of multiple integrals and combinatorial summations. We obtain the product formulas of the numbers of skew SYT of certain truncated shapes, including the skew SYT $((n+k)^{r+1},n^{m-1}) / (n-1)^r $ truncated by a rectangle or nearly a rectangle, the skew SYT of truncated shape $((n+1)^3,n^{m-2}) / (n-2) \backslash \; (2^2)$, and the SYT of truncated shape $((n+1)^2,n^{m-2}) \backslash \; (2)$.





1984 ◽  
Vol 17 (1) ◽  
pp. 19-45 ◽  
Author(s):  
R C King ◽  
N G I El-Sharkaway




Sign in / Sign up

Export Citation Format

Share Document