scholarly journals Large Cliques in Sparse Random Intersection Graphs

10.37236/6233 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Mindaugas Bloznelis ◽  
Valentas Kurauskas

An intersection graph defines an adjacency relation between subsets $S_1,\dots, S_n$ of a finite set $W=\{w_1,\dots, w_m\}$: the subsets $S_i$ and $S_j$ are adjacent if they intersect. Assuming that the subsets are drawn independently at random according to the probability distribution $\mathbb{P}(S_i=A)=P(|A|){\binom{m}{|A|}}^{-1}$, $A\subseteq W$, where $P$ is a probability on $\{0, 1, \dots, m\}$, we obtain the random intersection graph $G=G(n,m,P)$. We establish  the asymptotic order of the clique number $\omega(G)$ of  a sparse random intersection graph as $n,m\to+\infty$. For $m = \Theta(n)$ we show that the maximum clique is of size $(1-\alpha/2)^{-\alpha/2}n^{1-\alpha/2}(\ln n)^{-\alpha/2}(1+o_P(1))$ in the case where the asymptotic degree distribution of $G$ is a power-law with exponent $\alpha \in (1,2)$. It is of size $\frac {\ln n} {\ln \ln n}(1+o_P(1))$ if the degree distribution has bounded variance, i.e., $\alpha>2$. We construct a simple polynomial-time algorithm which finds a clique of the optimal order $\omega(G) (1-o_P(1))$.

2009 ◽  
Vol 23 (4) ◽  
pp. 661-674 ◽  
Author(s):  
Maria Deijfen ◽  
Willemien Kets

A random intersection graph is constructed by assigning independently to each vertex a subset of a given set and drawing an edge between two vertices if and only if their respective subsets intersect. In this article a model is developed in which each vertex is given a random weight and vertices with larger weights are more likely to be assigned large subsets. The distribution of the degree of a given vertex is characterized and is shown to depend on the weight of the vertex. In particular, if the weight distribution is a power law, the degree distribution will be as well. Furthermore, an asymptotic expression for the clustering in the graph is derived. By tuning the parameters of the model, it is possible to generate a graph with arbitrary clustering, expected degree, and—in the power-law case—tail exponent.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Yilun Shang

We study isolated vertices and connectivity in the random intersection graph . A Poisson convergence for the number of isolated vertices is determined at the threshold for absence of isolated vertices, which is equivalent to the threshold for connectivity. When and , we give the asymptotic probability of connectivity at the threshold for connectivity. Analogous results are well known in Erdős-Rényi random graphs.


10.37236/2786 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Mindaugas Bloznelis ◽  
Julius Damarackas

We show the asymptotic degree distribution of the typical vertex of a sparse inhomogeneous random intersection graph.


10.37236/935 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Behrisch

We study the evolution of the order of the largest component in the random intersection graph model which reflects some clustering properties of real–world networks. We show that for appropriate choice of the parameters random intersection graphs differ from $G_{n,p}$ in that neither the so-called giant component, appearing when the expected vertex degree gets larger than one, has linear order nor is the second largest of logarithmic order. We also describe a test of our result on a protein similarity network.


10.37236/1805 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Seog-Jin Kim ◽  
Alexandr Kostochka ◽  
Kittikorn Nakprasit

Let $G$ be the intersection graph of a finite family of convex sets obtained by translations of a fixed convex set in the plane. We show that every such graph with clique number $k$ is $(3k-3)$-degenerate. This bound is sharp. As a consequence, we derive that $G$ is $(3k-2)$-colorable. We show also that the chromatic number of every intersection graph $H$ of a family of homothetic copies of a fixed convex set in the plane with clique number $k$ is at most $6k-6$.


Algorithmica ◽  
2021 ◽  
Author(s):  
Jan Kratochvíl ◽  
Tomáš Masařík ◽  
Jana Novotná

AbstractInterval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs—a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a richer class of graphs. In particular, mixed unit interval graphs may contain a claw as an induced subgraph, as opposed to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs. We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyacı et al. (Inf Process Lett 121:29–33, 2017. 10.1016/j.ipl.2017.01.007). Hence, the time complexity of this problem on unit interval graphs remains open. We further provide a better algorithmic upper-bound on the clique-width of mixed unit interval graphs.


2005 ◽  
Vol 2005 (9) ◽  
pp. 1405-1413 ◽  
Author(s):  
V. Prakash

In 1998, Pandu Rangan et al. Proved that locating theg-centroid for an arbitrary graph is𝒩𝒫-hard by reducing the problem of finding the maximum clique size of a graph to theg-centroid location problem. They have also given an efficient polynomial time algorithm for locating theg-centroid for maximal outerplanar graphs, Ptolemaic graphs, and split graphs. In this paper, we present anO(nm)time algorithm for locating theg-centroid for cographs, wherenis the number of vertices andmis the number of edges of the graph.


2017 ◽  
Vol 97 (2) ◽  
pp. 185-193 ◽  
Author(s):  
SARIKA DEVHARE ◽  
VINAYAK JOSHI ◽  
JOHN LAGRANGE

In this paper, it is proved that the complement of the zero-divisor graph of a partially ordered set is weakly perfect if it has finite clique number, completely answering the question raised by Joshi and Khiste [‘Complement of the zero divisor graph of a lattice’,Bull. Aust. Math. Soc. 89(2014), 177–190]. As a consequence, the intersection graph of an intersection-closed family of nonempty subsets of a set is weakly perfect if it has finite clique number. These results are applied to annihilating-ideal graphs and intersection graphs of submodules.


Sign in / Sign up

Export Citation Format

Share Document