scholarly journals Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers

10.37236/6376 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Paul Drube

An inverted semistandard Young tableau is a row-standard tableau along with a collection of inversion pairs that quantify how far the tableau is from being column semistandard. Such a tableau with precisely $k$ inversion pairs is said to be a $k$-inverted semistandard Young tableau. Building upon earlier work by Fresse and the author, this paper develops generating functions for the numbers of $k$-inverted semistandard Young tableaux of various shapes $\lambda$ and contents $\mu$. An easily-calculable generating function is given for the number of $k$-inverted semistandard Young tableaux that "standardize" to a fixed semistandard Young tableau. For $m$-row shapes $\lambda$ and standard content $\mu$, the total number of $k$-inverted standard Young tableaux of shape $\lambda$ is then enumerated by relating such tableaux to $m$-dimensional generalizations of Dyck paths and counting the numbers of "returns to ground" in those paths. In the rectangular specialization of $\lambda = n^m$ this yields a generating function that involves $m$-dimensional analogues of the famed Ballot numbers. Our various results are then used to directly enumerate all $k$-inverted semistandard Young tableaux with arbitrary content and two-row shape $\lambda = a^1 b^1$, as well as all $k$-inverted standard Young tableaux with two-column shape $\lambda=2^n$.


10.37236/5469 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Paul Drube

A tableau inversion is a pair of entries from the same column of a row-standard tableau that lack the relative ordering necessary to make the tableau column-standard. An $i$-inverted Young tableau is a row-standard tableau with precisely $i$ inversion pairs, and may be interpreted as a generalization of (column-standard) Young tableaux. Inverted Young tableaux that lack repeated entries were introduced by Fresse to calculate the Betti numbers of Springer fibers in Type A, and were later developed as combinatorial objects in their own right by Beagley and Drube. This paper generalizes earlier notions of tableau inversions to row-standard tableaux with repeated entries, yielding an interesting new generalization of semistandard (as opposed to merely standard) Young tableaux. We develop a closed formula for the maximum numbers of inversion pairs for a row-standard tableau with a specific shape and content, and show that the number of $i$-inverted tableaux of a given shape is invariant under permutation of content. We then enumerate $i$-inverted Young tableaux for a variety of shapes and contents, and generalize an earlier result that places $1$-inverted Young tableaux of a general shape in bijection with $0$-inverted Young tableaux of a variety of related shapes.



Author(s):  
Mark Dukes ◽  
Toufik Mansour

In this paper, we introduce a new statistic on standard Young tableaux that is closely related to the maxdrop permutation statistic that was introduced by the first author. We prove that the value of the statistic must be attained at one of the corners of the standard Young tableau. We determine the coefficients of the generating function of this statistic over two-row standard Young tableaux having [Formula: see text] cells. We prove several results for this new statistic that include unimodality of the coefficients for the two-row case.



10.37236/6466 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Ping Sun

Let $g_{n_1,n_2}$ be the number of standard Young tableau of truncated shifted shape with $n_1$ rows and $n_2$ boxes in each row. By using the integral method this paper derives the recurrence relations of $g_{3,n}$, $g_{n,4}$ and $g_{n,5}$ respectively. Specifically, $g_{n,4}$ is the $(2n-1)$-st Pell number.



10.37236/4932 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Jonathan E. Beagley ◽  
Paul Drube

A tableau inversion is a pair of entries in row-standard tableau $T$ that lie in the same column of $T$ yet lack the appropriate relative ordering to make $T$ column-standard.  An $i$-inverted Young tableau is a row-standard tableau along with precisely $i$ inversion pairs. Tableau inversions were originally introduced by Fresse to calculate the Betti numbers of Springer fibers in Type A, with the number of $i$-inverted tableaux that standardize to a fixed standard Young tableau corresponding to a specific Betti number of the associated fiber. In this paper we approach the topic of tableau inversions from a completely combinatorial perspective. We develop formulas enumerating the number of $i$-inverted Young tableaux for a variety of tableaux shapes, not restricting ourselves to inverted tableau that standardize a specific standard Young tableau, and construct bijections between $i$-inverted Young tableaux of a certain shape with $j$-inverted Young tableaux of different shapes. Finally, we share some the results of a computer program developed to calculate tableaux inversions.



10.37236/859 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Marcos Kiwi ◽  
Martin Loebl

We address the following question: When a randomly chosen regular bipartite multi–graph is drawn in the plane in the "standard way", what is the distribution of its maximum size planar matching (set of non–crossing disjoint edges) and maximum size planar subgraph (set of non–crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) problem (also called Ulam's problem). We present combinatorial identities which relate the number of $r$-regular bipartite multi–graphs with maximum planar matching (maximum planar subgraph) of at most $d$ edges to a signed sum of restricted lattice walks in ${\Bbb Z}^d$, and to the number of pairs of standard Young tableaux of the same shape and with a "descend–type" property. Our results are derived via generalizations of two combinatorial proofs through which Gessel's identity can be obtained (an identity that is crucial in the derivation of a bivariate generating function associated to the distribution of the length of LISs, and key to the analytic attack on Ulam's problem). Finally, we generalize Gessel's identity. This enables us to count, for small values of $d$ and $r$, the number of $r$-regular bipartite multi-graphs on $n$ nodes per color class with maximum planar matchings of size $d$.Our work can also be viewed as a first step in the study of pattern avoidance in ordered bipartite multi-graphs.



10.37236/7713 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Judith Jagenteufel

Motivated by the direct-sum-decomposition of the $r^{\text{th}}$ tensor power of the defining representation of the special orthogonal group $\mathrm{SO}(2k + 1)$, we present a bijection between vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau for $\mathrm{SO}(3)$.Our bijection preserves a suitably defined descent set. Using it we determine the quasi-symmetric expansion of the Frobenius characters of the isotypic components.On the combinatorial side we obtain a bijection between Riordan paths and standard Young tableaux with 3 rows, all of even length or all of odd length.



10.37236/8346 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Guoce Xin ◽  
Yingrui Zhang

Garsia and Xin gave a linear algorithm for inverting the sweep map for Fuss rational Dyck paths in $D_{m,n}$ where $m=kn\pm 1$. They introduced an intermediate family $\mathcal{T}_n^k$ of certain standard Young tableaux. Then inverting the sweep map is done by a simple walking algorithm on a $T\in \mathcal{T}_n^k$. We find their idea naturally extends for $\mathbf{k}^\pm$-Dyck paths, and also for $\mathbf{k}$-Dyck paths (reducing to $k$-Dyck paths for the equal parameter case). The intermediate object becomes a similar type of tableau in $\mathcal{T}_\mathbf{k}$ of different column lengths. This approach is independent of the Thomas-Williams algorithm for inverting the general modular sweep map.



10.37236/6806 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Herman Z. Q. Chen ◽  
Arthur L. B. Yang ◽  
Philip B. Zhang

In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillov's unimodality conjecture. By using an equidistribution property between descent numbers and ascent numbers on ballot paths due to Sulanke and a bijection between lattice words and standard Young tableaux, we show that the rectangular Narayana polynomial is equal to the descent generating function on standard Young tableaux of certain rectangular shape, up to a power of the indeterminate. Then we obtain the real-rootedness of the rectangular Narayana polynomial based on a result of Brenti which implies that the descent generating function of standard Young tableaux has only real zeros.



10.37236/2034 ◽  
2012 ◽  
Vol 18 (2) ◽  
Author(s):  
Dennis E. Davenport ◽  
Louis W. Shapiro ◽  
Leon C. Woodson

The Riordan group is a group of infinite lower triangular matrices that are defined by two generating functions, $g$ and $f$. The kth column of the matrix has the generating function $gf^k$. In the Double Riordan group there are two generating function $f_1$ and $f_2$ such that the columns, starting at the left, have generating functions using $f_1$ and $f_2$ alternately. Examples include Dyck paths with level steps of length 2  allowed at even height and also ordered trees with differing degree possibilities at even and odd height(perhaps representing summer and winter). The Double Riordan group is a generalization not of the Riordan group itself but of the checkerboard subgroup. In this context both familiar and far less familiar sequences occur such as the Motzkin numbers and the number of spoiled child trees. The latter is a slightly enhanced cousin of ordered trees which are counted by the Catalan numbers.



2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Robin Sulzgruber

International audience The number of standard Young tableaux of a fixed shape is famously given by the hook-length formula due to Frame, Robinson and Thrall. A bijective proof of Novelli, Pak and Stoyanovskii relies on a sorting algorithm akin to jeu-de-taquin which transforms an arbitrary filling of a partition into a standard Young tableau by exchanging adjacent entries. Recently, Krattenthaler and Müller defined the complexity of this algorithm as the average number of performed exchanges, and Neumann and the author proved it fulfils some nice symmetry properties. In this paper we recall and extend the previous results and provide new bijective proofs.



Sign in / Sign up

Export Citation Format

Share Document