scholarly journals The Second Eigenvalue of some Normal Cayley Graphs of Highly Transitive Groups

10.37236/8054 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Xueyi Huang ◽  
Qiongxiang Huang ◽  
Sebastian M. Cioabă

Let $G$ be a finite group acting transitively on $[n]=\{1,2,\ldots,n\}$, and  let $\Gamma=\mathrm{Cay}(G,T)$ be a Cayley graph of $G$. The graph $\Gamma$ is called  normal if $T$ is closed under conjugation. In this paper, we obtain an upper bound for the second (largest) eigenvalue of the adjacency matrix of the graph $\Gamma$ in terms of the second eigenvalues of certain subgraphs of $\Gamma$. Using this result, we develop a recursive method to  determine the second eigenvalues of certain  Cayley graphs of $S_n$, and we determine the second eigenvalues  of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $S_n$  with  $\max_{\tau\in T}|\mathrm{supp}(\tau)|\leqslant 5$, where $\mathrm{supp}(\tau)$ is the set of points in $[n]$ non-fixed by $\tau$.

10.37236/1815 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Zeph Landau ◽  
Alexander Russell

We give a simple proof of the Alon–Roichman theorem, which asserts that the Cayley graph obtained by selecting $c_\varepsilon \log |G|$ elements, independently and uniformly at random, from a finite group $G$ has expected second eigenvalue no more than $\varepsilon$; here $c_\varepsilon$ is a constant that depends only on $\varepsilon$. In particular, such a graph is an expander with constant probability. Our new proof has three advantages over the original proof: (i.) it is extremely simple, relying only on the decomposition of the group algebra and tail bounds for operator-valued random variables, (ii.) it shows that the $\log |G|$ term may be replaced with $\log D$, where $D \leq |G|$ is the sum of the dimensions of the irreducible representations of $G$, and (iii.) it establishes the result above with a smaller constant $c_\varepsilon$.


2021 ◽  
Vol 184 ◽  
pp. 105495
Author(s):  
Czesław Bagiński ◽  
Piotr Grzeszczuk

10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


Corresponding to a fixed prime p there exists a function g(h) such that the order of the automorphism group of a finite group G is divisible by p h , provided that the order of G is divisible by p g(h) . An explicit upper bound for g(h) is obtained.


2020 ◽  
Vol 27 (01) ◽  
pp. 131-136
Author(s):  
Elena V. Konstantinova ◽  
Daria Lytkina

We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group 〈s〉 is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {−n+1, 1−n+1, 22 −n+1, …, (n−1)2 −n+1}.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6419-6429 ◽  
Author(s):  
Modjtaba Ghorbani ◽  
Farzaneh Nowroozi-Larki

Let G be a finite group of order pqr where p > q > r > 2 are prime numbers. In this paper, we find the spectrum of Cayley graph Cay(G,S) where S ? G \ {e} is a normal symmetric generating subset.


1998 ◽  
Vol 58 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G which does not contain the identity of G, we use Cay(G, S) to denote the Cayley graph of G with respect to S. For a positive integer m, the group G is called a (connected) m-DCI-group if for any (connected) Cayley graphs Cay(G, S) and Cay(G, T) of out-valency at most m, Sσ = T for some σ ∈ Aut(G) whenever Cay(G, S) ≅ Cay(G, T). Let p(G) be the smallest prime divisor of |G|. It was previously shown that each finite group G is a connected m-DCI-group for m ≤ p(G) − 1 but this is not necessarily true for m = p(G). This leads to a natural question: which groups G are connected p(G)-DCI-groups? Here we conjecture that the answer of this question is positive for finite simple groups, that is, finite simple groups are all connected 2-DCI-groups. We verify this conjecture for the linear groups PSL(2, q). Then we prove that a nonabelian simple group G is a 2-DCI-group if and only if G = A5.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250092 ◽  
Author(s):  
WEI MENG ◽  
JIANGTAO SHI ◽  
KELIN CHEN

Let G be a finite group and e a positive integer dividing |G|, the order of G. Denoting Le(G) = {x ∈ G|xe = 1}. Frobenius proved that |Le(G)| = ke for some positive integer k ≥ 1. Let k(G) be the upper bound of the set {k||Le(G)| = ke, ∀ e ||G|}. In this paper, a complete classification of the finite group G with k(G) = 3 is obtained.


2006 ◽  
Vol 74 (1) ◽  
pp. 121-132 ◽  
Author(s):  
A. Abdollahi ◽  
A. Azad ◽  
A. Mohammadi Hassanabadi ◽  
M. Zarrin

This paper is an attempt to provide a partial answer to the following question put forward by Bernhard H. Neumann in 2000: “Let G be a finite group of order g and assume that however a set M of m elements and a set N of n elements of the group is chosen, at least one element of M commutes with at least one element of N. What relations between g, m, n guarantee that G is Abelian?” We find an exponential function f(m,n) such that every such group G is Abelian whenever |G| > f(m,n) and this function can be taken to be polynomial if G is not soluble. We give an upper bound in terms of m and n for the solubility length of G, if G is soluble.


Sign in / Sign up

Export Citation Format

Share Document