scholarly journals Finding Unavoidable Colorful Patterns in Multicolored Graphs

10.37236/8184 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Matt Bowen ◽  
Ander Lamaison ◽  
Alp Müyesser

We provide multicolored and infinite generalizations for a Ramsey-type problem raised by Bollobás, concerning colorings of $K_n$ where each color is well-represented. Let $\chi$ be a coloring of the edges of a complete graph on $n$ vertices into $r$ colors. We call $\chi$ $\varepsilon$-balanced if all color classes have $\varepsilon$ fraction of the edges. Fix some graph $H$, together with an $r$-coloring of its edges. Consider the smallest natural number $R_\varepsilon^r(H)$ such that for all $n\geq R_\varepsilon^r(H)$, all $\varepsilon$-balanced colorings $\chi$ of $K_n$ contain a subgraph isomorphic to $H$ in its coloring. Bollobás conjectured a simple characterization of $H$ for which $R_\varepsilon^2(H)$ is finite, which was later proved by Cutler and Montágh. Here, we obtain a characterization for arbitrary values of $r$, as well as asymptotically tight bounds. We also discuss generalizations to graphs defined on perfect Polish spaces, where the corresponding notion of balancedness is each color class being non-meagre. 

10.37236/8385 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Eben Blaisdell ◽  
András Gyárfás ◽  
Robert A. Krueger ◽  
Ronen Wdowinski

We show that for $n \geq 3, n\ne 5$, in any partition of $\mathcal{P}(n)$, the set of all subsets of $[n]=\{1,2,\dots,n\}$, into $2^{n-2}-1$ parts, some part must contain a triangle — three different subsets $A,B,C\subseteq [n]$ such that $A\cap B,A\cap C,B\cap C$ have distinct representatives. This is sharp, since by placing two complementary pairs of sets into each partition class, we have a partition into $2^{n-2}$ triangle-free parts.  We also address a more general Ramsey-type problem: for a given graph $G$, find (estimate) $f(n,G)$, the smallest number of colors needed for a coloring of $\mathcal{P}(n)$, such that no color class contains a Berge-$G$ subhypergraph. We give an upper bound for $f(n,G)$ for any connected graph $G$ which is asymptotically sharp when $G$ is a cycle, path, or star. Additional bounds are given when $G$ is a $4$-cycle and when $G$ is a claw.


2002 ◽  
Vol 133 (2) ◽  
pp. 325-343 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
AKIRA YASUHARA

In the 1990s, Habiro defined Ck-move of oriented links for each natural number k [5]. A Ck-move is a kind of local move of oriented links, and two oriented knots have the same Vassiliev invariants of order [les ] k−1 if and only if they are transformed into each other by Ck-moves. Thus he has succeeded in deducing a geometric conclusion from an algebraic condition. However, this theorem appears only in his recent paper [6], in which he develops his original clasper theory and obtains the theorem as a consequence of clasper theory. We note that the ‘if’ part of the theorem is also shown in [4], [9], [10] and [16], and in [13] Stanford gives another characterization of knots with the same Vassiliev invariants of order [les ] k−1.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
M. M. M. Jaradat ◽  
M. S. A. Bataineh ◽  
S. M. E. Radaideh

The graph Ramsey number is the smallest integer with the property that any complete graph of at least vertices whose edges are colored with two colors (say, red and blue) contains either a subgraph isomorphic to all of whose edges are red or a subgraph isomorphic to all of whose edges are blue. In this paper, we consider the Ramsey numbers for theta graphs. We determine , for . More specifically, we establish that for . Furthermore, we determine for . In fact, we establish that if is even, if is odd.


1996 ◽  
Vol 150 (1-3) ◽  
pp. 61-67 ◽  
Author(s):  
Miklós Bóna ◽  
Géza Tóth
Keyword(s):  

2013 ◽  
Vol 23 (1) ◽  
pp. 102-115 ◽  
Author(s):  
TEERADEJ KITTIPASSORN ◽  
BHARGAV P. NARAYANAN

Given an edge colouring of a graph with a set of m colours, we say that the graph is exactly m-coloured if each of the colours is used. We consider edge colourings of the complete graph on $\mathbb{N}$ with infinitely many colours and show that either one can find an exactly m-coloured complete subgraph for every natural number m or there exists an infinite subset X ⊂ $\mathbb{N}$ coloured in one of two canonical ways: either the colouring is injective on X or there exists a distinguished vertex v in X such that X\{v} is 1-coloured and each edge between v and X\{v} has a distinct colour (all different to the colour used on X\{v}). This answers a question posed by Stacey and Weidl in 1999. The techniques that we develop also enable us to resolve some further questions about finding exactly m-coloured complete subgraphs in colourings with finitely many colours.


2019 ◽  
Vol 257 ◽  
pp. 260-268 ◽  
Author(s):  
Lihuan Mao ◽  
Sebastian M. Cioabă ◽  
Wei Wang

2020 ◽  
Vol 57 (3) ◽  
pp. 284-289
Author(s):  
Paolo Lipparini

AbstractWe provide a Maltsev characterization of congruence distributive varieties by showing that a variety 𝓥 is congruence distributive if and only if the congruence identity … (k factors) holds in 𝓥, for some natural number k.


2017 ◽  
Vol 1 (2) ◽  
pp. 9
Author(s):  
Chula Jayawardene

<p>Let $P_n$ represent the path of size $n$. Let $K_{1,m-1}$ represent a star of size $m$ and be denoted by $S_{m}$. Given a two coloring of the edges of a complete graph $K_{j \times s}$ we say that $K_{j \times s}\rightarrow (P_n,S_{m+1})$ if there is a copy of $P_n$ in the first color or a copy of $S_{m+1}$ in the second color. The size Ramsey multipartite number $m_j(P_n, S_{m+1})$ is the smallest natural number $s$ such that $K_{j \times s}\rightarrow (P_n,S_{m+1})$. Given $j,n,m$ if $s=\left\lceil \dfrac{n+m-1-k}{j-1} \right\rceil$, in this paper, we show that the size Ramsey numbers $m_j(P_n,S_{m+1})$ is bounded above by $s$ for $k=\left\lceil \dfrac{n-1}{j} \right\rceil$. Given $j\ge 3$ and $s$, we will obtain an infinite class $(n,m)$ that achieves this upper bound $s$. In the later part of the paper, will also investigate necessary and sufficient conditions needed for the upper bound to hold.</p>


Author(s):  
Joseph P. Reidy

Confined space offers an instructive vantage point into the reconfiguration of social relationships that were central to the emancipation process. In homes and kitchens throughout the slave states, enslaved house servants devised strategies for asserting greater control over their labor and their lives, even when escape to freedom was out of reach. Women and men hired to work in the shops and factories that supported the Confederate war effort interacted with new casts of characters with new possibilities for stretching their customary boundaries and shedding their usual constraints. For freedom-seeking refugees who reached Union lines, refugee camps (generally called "contraband camps") offered shelter and employment, though often under the watchful eyes of proselytizing Northerners. Cities presented special conditions for the breakdown of slavery, as the experience of Washington, D.C., illustrates. The D.C. emancipation act of April 1862 set in motion a contested process that defies the simple characterization of immediate emancipation.


Sign in / Sign up

Export Citation Format

Share Document