scholarly journals Partitioning the Power Set of $[n]$ into $C_k$-free parts

10.37236/8385 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Eben Blaisdell ◽  
András Gyárfás ◽  
Robert A. Krueger ◽  
Ronen Wdowinski

We show that for $n \geq 3, n\ne 5$, in any partition of $\mathcal{P}(n)$, the set of all subsets of $[n]=\{1,2,\dots,n\}$, into $2^{n-2}-1$ parts, some part must contain a triangle — three different subsets $A,B,C\subseteq [n]$ such that $A\cap B,A\cap C,B\cap C$ have distinct representatives. This is sharp, since by placing two complementary pairs of sets into each partition class, we have a partition into $2^{n-2}$ triangle-free parts.  We also address a more general Ramsey-type problem: for a given graph $G$, find (estimate) $f(n,G)$, the smallest number of colors needed for a coloring of $\mathcal{P}(n)$, such that no color class contains a Berge-$G$ subhypergraph. We give an upper bound for $f(n,G)$ for any connected graph $G$ which is asymptotically sharp when $G$ is a cycle, path, or star. Additional bounds are given when $G$ is a $4$-cycle and when $G$ is a claw.


10.37236/8184 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Matt Bowen ◽  
Ander Lamaison ◽  
Alp Müyesser

We provide multicolored and infinite generalizations for a Ramsey-type problem raised by Bollobás, concerning colorings of $K_n$ where each color is well-represented. Let $\chi$ be a coloring of the edges of a complete graph on $n$ vertices into $r$ colors. We call $\chi$ $\varepsilon$-balanced if all color classes have $\varepsilon$ fraction of the edges. Fix some graph $H$, together with an $r$-coloring of its edges. Consider the smallest natural number $R_\varepsilon^r(H)$ such that for all $n\geq R_\varepsilon^r(H)$, all $\varepsilon$-balanced colorings $\chi$ of $K_n$ contain a subgraph isomorphic to $H$ in its coloring. Bollobás conjectured a simple characterization of $H$ for which $R_\varepsilon^2(H)$ is finite, which was later proved by Cutler and Montágh. Here, we obtain a characterization for arbitrary values of $r$, as well as asymptotically tight bounds. We also discuss generalizations to graphs defined on perfect Polish spaces, where the corresponding notion of balancedness is each color class being non-meagre. 



1996 ◽  
Vol 150 (1-3) ◽  
pp. 61-67 ◽  
Author(s):  
Miklós Bóna ◽  
Géza Tóth
Keyword(s):  


2021 ◽  
Vol 66 (3) ◽  
pp. 3-7
Author(s):  
Anh Nguyen Thi Thuy ◽  
Duyen Le Thi

Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.



1968 ◽  
Vol 11 (3) ◽  
pp. 499-501 ◽  
Author(s):  
J. A. Bondy

The distance d(x, y) between vertices x, y of a graph G is the length of the shortest path from x to y in G. The diameter δ(G) of G is the maximum distance between any pair of vertices in G. i.e. δ(G) = max max d(x, y). In this note we obtain an upper boundx ε G y ε Gfor δ(G) in terms of the numbers of vertices and edges in G. Using this bound it is then shown that for any complement-connected graph G with N verticeswhere is the complement of G.





Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 191 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Hussain

Let G = (V, E) be a connected graph and d(x, y) be the distance between the vertices x and y in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G and is denoted by dim(G). In this paper, Cycle, Path, Harary graphs and their rooted product as well as their connectivity are studied and their metric dimension is calculated. It is proven that metric dimension of some graphs is unbounded while the other graphs are constant, having three or four dimensions in certain cases.



1993 ◽  
Vol 122 (1-3) ◽  
pp. 335-341 ◽  
Author(s):  
Jochen Harant
Keyword(s):  


2015 ◽  
Vol 49 ◽  
pp. 821-827 ◽  
Author(s):  
Ross J. Kang ◽  
Viresh Patel ◽  
Guus Regts
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document