Characterization of Wheat Stripe Rust Resistance Genes in Shaanmai 139

2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI
2016 ◽  
Vol 17 (4) ◽  
pp. 601 ◽  
Author(s):  
Ennian Yang ◽  
Guangrong Li ◽  
Liping Li ◽  
Zhenyu Zhang ◽  
Wuyun Yang ◽  
...  

Crop Science ◽  
2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Nithya K. Subramanian ◽  
Richard Esten Mason ◽  
Eugene A. Milus ◽  
David E. Moon ◽  
Gina Brown-Guedira

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 483
Author(s):  
Tian Hu ◽  
Xiao Zhong ◽  
Qiang Yang ◽  
Xinli Zhou ◽  
Xin Li ◽  
...  

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases in wheat. Due to the large-scale and widely-distributed planting pattern of wheat, the directional selection pressure of the pathogen is very strong. Therefore, it is urgent to pyramid more stripe rust resistance genes in wheat cultivars to enhance resistance durability and ensure wheat production safety. In this study, two quantitative trait loci (QTL) for adult plant resistance (APR) to stripe rust, QYr.nafu-2BL and QYr.nafu-3BS, were validated and introgressed from wheat line P9897 into three Chinese elite wheat cultivars, Chuanmai 42, Xiangmai 25, and Zhengmai 9023, through marker validation. The three Chinese elite varieties were used as the female parent to cross with wheat line P9897, and they were selfed to the F6 generation. A total of 114 lines were then selected based on field agronomic traits and stripe rust resistance. Four markers (Xcfd73, Xgwm120, Xbarc87 and Xbarc133) linked with the QTL’s regions were employed to screen the 114 F6 lines. Subsequently, 27 lines combining two target QTL from P9897 were selected. The combination of agronomic traits and disease resistance results showed that 13 of these selected lines had favorable application prospects. The promising lines selected in this study could enrich the genetic resources of wheat stripe rust resistance genes, as well as provide material support and a theoretical basis for the prevention and control of wheat stripe rust in China.


Crop Science ◽  
2009 ◽  
Vol 49 (5) ◽  
pp. 1786-1790 ◽  
Author(s):  
Lesley R. Murphy ◽  
Dipak Santra ◽  
Kimberlee Kidwell ◽  
Guiping Yan ◽  
Xianming Chen ◽  
...  

2009 ◽  
Vol 120 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Peng Zhang ◽  
Robert A. McIntosh ◽  
Sami Hoxha ◽  
Chongmei Dong

Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 922-927 ◽  
Author(s):  
P. G. Luo ◽  
X. Y. Hu ◽  
Z. L. Ren ◽  
H. Y. Zhang ◽  
K. Shu ◽  
...  

Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat ( Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2658-2664
Author(s):  
Tao Liu ◽  
George Fedak ◽  
Lianquan Zhang ◽  
Rangrang Zhou ◽  
Dawn Chi ◽  
...  

There has not been a major wheat stem rust epidemic worldwide since the 1970s, but the emergence of race TTKSK of Puccinia graminis f. sp. tritici in 1998 presented a great threat to the world wheat production. Single disease-resistance genes are usually effective for only several years before the pathogen changes genetically to overcome the resistance. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most common and persistent wheat diseases worldwide. The development of varieties with multiple resistance is the most economical and effective strategy for preventing stripe rust and stem rust, the two main rust diseases constraining wheat production. Plateau 448 has been widely used in the spring wheat growing region in northwest China, but it has become susceptible to stripe rust and is susceptible to TTKSK. To produce more durable resistance to race TTKSK as well as to stripe rust, four stem rust resistance genes (Sr33, Sr36, Sr-Cad, and Sr43) and three stripe rust resistance genes (Yr5, Yr18, and Yr26) were simultaneously introgressed into Plateau 448 to improve its stem rust (Ug99) and stripe rust resistance using a marker-assisted backcrossing strategy combined with phenotypic selection. We obtained 131 BC1F5 lines that pyramided two to four Ug99 resistance genes and one to two Pst resistance genes simultaneously. Thirteen of these lines were selected for their TTKSK resistance, and all of them exhibited near immunity or high resistance to TTKSK. Among the 131 pyramided lines, 95 showed high resistance to mixed Pst races. Nine lines exhibited not only high resistance to TTKSK and Pst but also better agronomic traits and high-molecular-weight glutenin subunit compositions than Plateau 448.


Sign in / Sign up

Export Citation Format

Share Document