Research and implementation of group path generation based on particle swarm optimization

2010 ◽  
Vol 30 (2) ◽  
pp. 461-464 ◽  
Author(s):  
Jing NIE ◽  
Hong LIU ◽  
Qi WANG
2012 ◽  
Vol 249-250 ◽  
pp. 1180-1187 ◽  
Author(s):  
Cheng Kang Lee ◽  
Yung Chang Cheng

Particle swarm optimization (PSO) is a well-known population-based searching algorithm to solving optimization problems. This paper aims at identifying significant control factors for PSO to solving the design optimization problem of a four-bar linkage for path generation. Control factors considered herein are inertial weight, acceleration coefficients, breeding operation, and the number of population. A full factorial design of experiments is used to construct a set of experiments. Experimental results are analyzed with the analysis of variance method. According to the results obtained in this paper, breeding operation and the interaction between breeding operation and acceleration coefficients are significant. Inertial weight, acceleration coefficients, the number of population, and the other interactions are not significant. For the design optimization problem discussed herein, it is suggested to adopt breeding operation strategy and apply constant acceleration coefficients to increase significantly PSO’s performance and robustness. Type of inertial weight and the number of population do not affect PSO’s performance and robustness significantly.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

2009 ◽  
Vol 129 (3) ◽  
pp. 568-569
Author(s):  
Satoko Kinoshita ◽  
Atsushi Ishigame ◽  
Keiichiro Yasuda

Sign in / Sign up

Export Citation Format

Share Document