Significant Factors Identification for Particle Swarm Optimization Algorithm to Solving the Design Optimization Problem of a Four-Bar Linkage for Path Generation

2012 ◽  
Vol 249-250 ◽  
pp. 1180-1187 ◽  
Author(s):  
Cheng Kang Lee ◽  
Yung Chang Cheng

Particle swarm optimization (PSO) is a well-known population-based searching algorithm to solving optimization problems. This paper aims at identifying significant control factors for PSO to solving the design optimization problem of a four-bar linkage for path generation. Control factors considered herein are inertial weight, acceleration coefficients, breeding operation, and the number of population. A full factorial design of experiments is used to construct a set of experiments. Experimental results are analyzed with the analysis of variance method. According to the results obtained in this paper, breeding operation and the interaction between breeding operation and acceleration coefficients are significant. Inertial weight, acceleration coefficients, the number of population, and the other interactions are not significant. For the design optimization problem discussed herein, it is suggested to adopt breeding operation strategy and apply constant acceleration coefficients to increase significantly PSO’s performance and robustness. Type of inertial weight and the number of population do not affect PSO’s performance and robustness significantly.

Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1418-1423
Author(s):  
Pasura Aungkulanon

Machining optimization problem aims to optimize machinery conditions which are important for economic settings. The effective methods for solving these problems using a finite sequence of instructions can be categorized into two groups; exact optimization algorithm and meta-heuristic algorithms. A well-known meta-heuristic approach called Harmony Search Algorithm was used to compare with Particle Swarm Optimization. We implemented and analysed algorithms using unconstrained problems under different conditions included single, multi-peak, curved ridge optimization, and machinery optimization problem. The computational outputs demonstrated the proposed Particle Swarm Optimization resulted in the better outcomes in term of mean and variance of process yields.


2012 ◽  
Vol 538-541 ◽  
pp. 3074-3078
Author(s):  
Yi Liu ◽  
Cai Hong Mu ◽  
Wei Dong Kou ◽  
Jing Liu

This paper presents a variant of the particle swarm optimization (PSO) that we call the adaptive particle swarm optimization with dynamic population (DP-APSO), which adopts a novel dynamic population (DP) strategy whereby the population size of swarm can vary with the evolutionary process. The DP strategy enables the population size to increase when the swarm converges and decrease when the swarm disperses. Experiments were conducted on two well-studied constrained engineering design optimization problems. The results demonstrate better performance of the DP-APSO in solving these engineering design optimization problems when compared with two other evolutionary computation algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaobing Yu ◽  
Jie Cao ◽  
Haiyan Shan ◽  
Li Zhu ◽  
Jun Guo

Particle swarm optimization (PSO) and differential evolution (DE) are both efficient and powerful population-based stochastic search techniques for solving optimization problems, which have been widely applied in many scientific and engineering fields. Unfortunately, both of them can easily fly into local optima and lack the ability of jumping out of local optima. A novel adaptive hybrid algorithm based on PSO and DE (HPSO-DE) is formulated by developing a balanced parameter between PSO and DE. Adaptive mutation is carried out on current population when the population clusters around local optima. The HPSO-DE enjoys the advantages of PSO and DE and maintains diversity of the population. Compared with PSO, DE, and their variants, the performance of HPSO-DE is competitive. The balanced parameter sensitivity is discussed in detail.


Author(s):  
Hrvoje Markovic ◽  
◽  
Fangyan Dong ◽  
Kaoru Hirota

A parallel multi-population based metaheuristic optimization framework, called Concurrent Societies, inspired by human intellectual evolution, is proposed. It uses population based metaheuristics to evolve its populations, and fitness function approximations as representations of knowledge. By utilizing iteratively refined approximations it reduces the number of required evaluations and, as a byproduct, it produces models of the fitness function. The proposed framework is implemented as two Concurrent Societies: one based on genetic algorithm and one based on particle swarm optimization both using k -nearest neighbor regression as fitness approximation. The performance is evaluated on 10 standard test problems and compared to other commonly used metaheuristics. Results show that the usage of the framework considerably increases efficiency (by a factor of 7.6 to 977) and effectiveness (absolute error reduced by more than few orders of magnitude). The proposed framework is intended for optimization problems with expensive fitness functions, such as optimization in design and interactive optimization.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Waqas Haider Bangyal ◽  
Abdul Hameed ◽  
Wael Alosaimi ◽  
Hashem Alyami

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.


2018 ◽  
Vol 49 (1) ◽  
pp. 265-291 ◽  
Author(s):  
Naushad Manzoor Laskar ◽  
Koushik Guha ◽  
Indronil Chatterjee ◽  
Saurav Chanda ◽  
Krishna Lal Baishnab ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Di Zhou ◽  
Yajun Li ◽  
Bin Jiang ◽  
Jun Wang

Due to its fast convergence and population-based nature, particle swarm optimization (PSO) has been widely applied to address the multiobjective optimization problems (MOPs). However, the classical PSO has been proved to be not a global search algorithm. Therefore, there may exist the problem of not being able to converge to global optima in the multiobjective PSO-based algorithms. In this paper, making full use of the global convergence property of quantum-behaved particle swarm optimization (QPSO), a novel multiobjective QPSO algorithm based on the ring model is proposed. Based on the ring model, the position-update strategy is improved to address MOPs. The employment of a novel communication mechanism between particles effectively slows down the descent speed of the swarm diversity. Moreover, the searching ability is further improved by adjusting the position of local attractor. Experiment results show that the proposed algorithm is highly competitive on both convergence and diversity in solving the MOPs. In addition, the advantage becomes even more obvious with the number of objectives increasing.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012136
Author(s):  
B Sravan Kumar ◽  
ShaikHussain Vali ◽  
Vempalle Rafi ◽  
G Nageswara Reddy

Abstract In this paper space reduction particle swarm optimization(SRPSO) is proposed for solving single-objective optimization problems. Minimization of cost is considered as an objective in the economic dispatch problem. The valve point loading effect is incorporated with the cost function which transfigures to the nonlinear problem. To improve the convergence speed, space reduction is essential and parameter variation keeps away the struck of local optima. Particle swarm optimization (PSO) emphasizes global search and is encountered as a stochastic population-based method. The proposed method is validated on a 26 bus system with 6 generators and the performance results are compared with the other existing techniques.


2012 ◽  
Vol 479-481 ◽  
pp. 344-347
Author(s):  
Zhuo Li ◽  
Xue Luo Qu

Particle Swarm Optimization (PSO) is a novel artificial intelligent technique proposed by Eberhart and Kennedy which is a type of Swarm Intelligence. PSO is simulated as population-based stochastic optimization influenced by the social behavior of bird flocks. In past decades, more and more researcher has been targeting to improve the original PSO for solving various problems and it has great potential to be done further. This paper reviews the progress of PSO research so far, and the recent achievements for application to large-scale optimization problems.


Sign in / Sign up

Export Citation Format

Share Document