A SIFT Pruning Algorithm for Efficient Near-Duplicate Image Matching

2010 ◽  
Vol 22 (6) ◽  
pp. 1042-1049 ◽  
Author(s):  
Jinde Wang ◽  
Xiaoyan Li ◽  
Lidan Shou ◽  
Gang Chen
Author(s):  
A. Olsen ◽  
J.C.H. Spence ◽  
P. Petroff

Since the point resolution of the JEOL 200CX electron microscope is up = 2.6Å it is not possible to obtain a true structure image of any of the III-V or elemental semiconductors with this machine. Since the information resolution limit set by electronic instability (1) u0 = (2/πλΔ)½ = 1.4Å for Δ = 50Å, it is however possible to obtain, by choice of focus and thickness, clear lattice images both resembling (see figure 2(b)), and not resembling, the true crystal structure (see (2) for an example of a Fourier image which is structurally incorrect). The crucial difficulty in using the information between Up and u0 is the fractional accuracy with which Af and Cs must be determined, and these accuracies Δff/4Δf = (2λu2Δf)-1 and ΔCS/CS = (λ3u4Cs)-1 (for a π/4 phase change, Δff the Fourier image period) are strongly dependent on spatial frequency u. Note that ΔCs(up)/Cs ≈ 10%, independent of CS and λ. Note also that the number n of identical high contrast spurious Fourier images within the depth of field Δz = (αu)-1 (α beam divergence) decreases with increasing high voltage, since n = 2Δz/Δff = θ/α = λu/α (θ the scattering angle). Thus image matching becomes easier in semiconductors at higher voltage because there are fewer high contrast identical images in any focal series.


Author(s):  
LAKSHMI PRANEETHA

Now-a-days data streams or information streams are gigantic and quick changing. The usage of information streams can fluctuate from basic logical, scientific applications to vital business and money related ones. The useful information is abstracted from the stream and represented in the form of micro-clusters in the online phase. In offline phase micro-clusters are merged to form the macro clusters. DBSTREAM technique captures the density between micro-clusters by means of a shared density graph in the online phase. The density data in this graph is then used in reclustering for improving the formation of clusters but DBSTREAM takes more time in handling the corrupted data points In this paper an early pruning algorithm is used before pre-processing of information and a bloom filter is used for recognizing the corrupted information. Our experiments on real time datasets shows that using this approach improves the efficiency of macro-clusters by 90% and increases the generation of more number of micro-clusters within in a short time.


2013 ◽  
Vol 32 (11) ◽  
pp. 3157-3160
Author(s):  
Zhen-hua XUE ◽  
Ping WANG ◽  
Chu-han ZHANG ◽  
Si-jia CAI

2011 ◽  
Vol 33 (9) ◽  
pp. 2152-2157 ◽  
Author(s):  
Yong-he Tang ◽  
Huan-zhang Lu ◽  
Mou-fa Hu

2006 ◽  
Vol 13B (3) ◽  
pp. 323-328
Author(s):  
Yukhuu Ankhbayar ◽  
Suk-Hyung Hwang ◽  
Young-Sup Hwang

Author(s):  
Shuhua Ma ◽  
Peikai Guo ◽  
Hairong You ◽  
Ping He ◽  
Guanglin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document