Image Fusion Method Using Multi-scale Analysis and Improved PCNN

2019 ◽  
Vol 31 (6) ◽  
pp. 988
Author(s):  
Jiao Jiao ◽  
Lingda Wu ◽  
Shaobo Yu ◽  
Jiang Zhu
Author(s):  
Liu Xian-Hong ◽  
Chen Zhi-Bin

Background: A multi-scale multidirectional image fusion method is proposed, which introduces the Nonsubsampled Directional Filter Bank (NSDFB) into the multi-scale edge-preserving decomposition based on the fast guided filter. Methods: The proposed method has the advantages of preserving edges and extracting directional information simultaneously. In order to get better-fused sub-bands coefficients, a Convolutional Sparse Representation (CSR) based approximation sub-bands fusion rule is introduced and a Pulse Coupled Neural Network (PCNN) based detail sub-bands fusion strategy with New Sum of Modified Laplacian (NSML) to be the external input is also presented simultaneously. Results: Experimental results have demonstrated the superiority of the proposed method over conventional methods in terms of visual effects and objective evaluations. Conclusion: In this paper, combining fast guided filter and nonsubsampled directional filter bank, a multi-scale directional edge-preserving filter image fusion method is proposed. The proposed method has the features of edge-preserving and extracting directional information.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1362
Author(s):  
Hui Wan ◽  
Xianlun Tang ◽  
Zhiqin Zhu ◽  
Weisheng Li

Multi-focus image fusion is an important method used to combine the focused parts from source multi-focus images into a single full-focus image. Currently, to address the problem of multi-focus image fusion, the key is on how to accurately detect the focus regions, especially when the source images captured by cameras produce anisotropic blur and unregistration. This paper proposes a new multi-focus image fusion method based on the multi-scale decomposition of complementary information. Firstly, this method uses two groups of large-scale and small-scale decomposition schemes that are structurally complementary, to perform two-scale double-layer singular value decomposition of the image separately and obtain low-frequency and high-frequency components. Then, the low-frequency components are fused by a rule that integrates image local energy with edge energy. The high-frequency components are fused by the parameter-adaptive pulse-coupled neural network model (PA-PCNN), and according to the feature information contained in each decomposition layer of the high-frequency components, different detailed features are selected as the external stimulus input of the PA-PCNN. Finally, according to the two-scale decomposition of the source image that is structure complementary, and the fusion of high and low frequency components, two initial decision maps with complementary information are obtained. By refining the initial decision graph, the final fusion decision map is obtained to complete the image fusion. In addition, the proposed method is compared with 10 state-of-the-art approaches to verify its effectiveness. The experimental results show that the proposed method can more accurately distinguish the focused and non-focused areas in the case of image pre-registration and unregistration, and the subjective and objective evaluation indicators are slightly better than those of the existing methods.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 570 ◽  
Author(s):  
Jingchun Piao ◽  
Yunfan Chen ◽  
Hyunchul Shin

In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese convolutional neural network (CNN) is applied to automatically generate a weight map which represents the saliency of each pixel for a pair of source images. A CNN plays a role in automatic encoding an image into a feature domain for classification. By applying the proposed method, the key problems in image fusion, which are the activity level measurement and fusion rule design, can be figured out in one shot. The fusion is carried out through the multi-scale image decomposition based on wavelet transform, and the reconstruction result is more perceptual to a human visual system. In addition, the visual qualitative effectiveness of the proposed fusion method is evaluated by comparing pedestrian detection results with other methods, by using the YOLOv3 object detector using a public benchmark dataset. The experimental results show that our proposed method showed competitive results in terms of both quantitative assessment and visual quality.


2013 ◽  
Vol 448-453 ◽  
pp. 3621-3624 ◽  
Author(s):  
Ming Jing Li ◽  
Yu Bing Dong ◽  
Xiao Li Wang

Image fusion method based on the non multi-scale take the original image as object of study, using various fusion rule of image fusion to fuse images, but not decomposition or transform to original images. So, it can also be called simple multi sensor image fusion methods. Its advantages are low computational complexity and simple principle. Image fusion method based on the non multi-scale is currently the most widely used image fusion methods. The basic principle of fuse method is directly to select large gray, small gray and weighted average among pixel on the source image, to fuse into a new image. Simple pixel level image fusion method mainly includes the pixel gray value being average or weighted average, pixel gray value being selected large and pixel gray value being selected small, etc. Basic principle of fusion process was introduced in detail in this paper, and pixel level fusion algorithm at present was summed up. Simulation results on fusion are presented to illustrate the proposed fusion scheme. In practice, fusion algorithm was selected according to imaging characteristics being retained.


Sign in / Sign up

Export Citation Format

Share Document