Underwater Terrain Matching Positioning Method Based on MLE for AUV

ROBOT ◽  
2012 ◽  
Vol 34 (5) ◽  
pp. 559 ◽  
Author(s):  
Xiaolong CHEN ◽  
Yongjie PANG ◽  
Ye LI ◽  
Pengyun CHEN
2016 ◽  
Vol 70 (1) ◽  
pp. 82-100 ◽  
Author(s):  
Ye Li ◽  
Rupeng Wang ◽  
Pengyun Chen ◽  
Peng Shen ◽  
Yanqing Jiang

Measurement bias and lack of terrain features often cause false peaks during underwater terrain matching positioning, that is, there is more than one peak near the real position. Previous methods to address this problem have increased the number of measurement beams, but this also increases the data processing time and energy consumption. At the same time, the ratio of measured information that is used does not increase. In other words, we should increase the ratio of measured information that is used, not simply increase the amount of information that is measured. Conventional matching algorithms only use the height of nodes without considering surface information, which is composed of height and the position of multiple nodes in three-dimensional space. Multi-beam sonar can obtain the three-dimensional distribution of terrain nodes. This node information is not just a height sequence, as it is used in previous methods. If we consider the nodes as a three-dimensional distribution of points with height and position information, this increases the matching position information and more of the terrain features can be extracted from the same measured data. Hence, in this paper, a terrain positioning method called the Node Multi-information Fusion (NMIF) is presented. This method focuses on improving the stability and accuracy degraded by bias in the Digital Elevation Map (DEM), terrain repeatability, and other factors. First, the concept of a Single Node Data Packet (SNDP) is introduced. The SNDP includes elevation and surface information surrounding the node, such as roughness, gradient, and slope. This additional topographic feature information improves the robustness and accuracy of the system. A computer simulation using actual ocean bottom topography verifies the advantages of the proposed NMIF algorithm.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Leyli Karacay ◽  
Zeki Bilgin ◽  
Ayse Bilge Gunduz ◽  
Pinar Comak ◽  
Emrah Tomur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document