An Intelligent Personal Credit Rating Model based on Deep Learning Using GAN and DNN

2019 ◽  
Vol 19 (1) ◽  
pp. 1-16
Author(s):  
Tae-ho Hong ◽  
Sung-hun Kim ◽  
Eun-mi Kim
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Baofeng Shi ◽  
Bin Meng ◽  
Jing Wang

This paper introduces a novel decision assessment method which is suitable for customers’ credit risk evaluation and credit decision. First of all, the paper creates an optimal credit rating model, and it consisted of an objective function and two constraint conditions. The first constraint condition of the strictly increasing LGDs eliminates the unreasonable phenomenon that the higher the credit rating is, the higher the LGD (loss given default) is. Secondly, on the basis of the credit rating results, a credit decision-making assessment model based on measuring the acceptable maximum LGD of commercial banks is established. Thirdly, empirical results using the data on 2817 farmers’ microfinance of a Chinese commercial bank suggest that the proposed approach can accurately find out the good customers from all the loan applications. Moreover, our approach contributes to providing a reference for decision assessment of customers in other commercial banks in the world.


2011 ◽  
Vol 15 (2) ◽  
pp. 237-250 ◽  
Author(s):  
Ning Chen ◽  
Armando Vieira ◽  
Bernardete Ribeiro ◽  
João Duarte ◽  
João Neves

Author(s):  
Luuk J. Oostveen ◽  
Frederick J. A. Meijer ◽  
Frank de Lange ◽  
Ewoud J. Smit ◽  
Sjoert A. Pegge ◽  
...  

Abstract Objectives To evaluate image quality and reconstruction times of a commercial deep learning reconstruction algorithm (DLR) compared to hybrid-iterative reconstruction (Hybrid-IR) and model-based iterative reconstruction (MBIR) algorithms for cerebral non-contrast CT (NCCT). Methods Cerebral NCCT acquisitions of 50 consecutive patients were reconstructed using DLR, Hybrid-IR and MBIR with a clinical CT system. Image quality, in terms of six subjective characteristics (noise, sharpness, grey-white matter differentiation, artefacts, natural appearance and overall image quality), was scored by five observers. As objective metrics of image quality, the noise magnitude and signal-difference-to-noise ratio (SDNR) of the grey and white matter were calculated. Mean values for the image quality characteristics scored by the observers were estimated using a general linear model to account for multiple readers. The estimated means for the reconstruction methods were pairwise compared. Calculated measures were compared using paired t tests. Results For all image quality characteristics, DLR images were scored significantly higher than MBIR images. Compared to Hybrid-IR, perceived noise and grey-white matter differentiation were better with DLR, while no difference was detected for other image quality characteristics. Noise magnitude was lower for DLR compared to Hybrid-IR and MBIR (5.6, 6.4 and 6.2, respectively) and SDNR higher (2.4, 1.9 and 2.0, respectively). Reconstruction times were 27 s, 44 s and 176 s for Hybrid-IR, DLR and MBIR respectively. Conclusions With a slight increase in reconstruction time, DLR results in lower noise and improved tissue differentiation compared to Hybrid-IR. Image quality of MBIR is significantly lower compared to DLR with much longer reconstruction times. Key Points • Deep learning reconstruction of cerebral non-contrast CT results in lower noise and improved tissue differentiation compared to hybrid-iterative reconstruction. • Deep learning reconstruction of cerebral non-contrast CT results in better image quality in all aspects evaluated compared to model-based iterative reconstruction. • Deep learning reconstruction only needs a slight increase in reconstruction time compared to hybrid-iterative reconstruction, while model-based iterative reconstruction requires considerably longer processing time.


Sign in / Sign up

Export Citation Format

Share Document