Disequilibrium vegetation dynamics under future climate change

2013 ◽  
Vol 100 (7) ◽  
pp. 1266-1286 ◽  
Author(s):  
Jens-Christian Svenning ◽  
Brody Sandel
2021 ◽  
Author(s):  
Laura Dziomber ◽  
Lisa Gurtner ◽  
Maria Leunda ◽  
Christoph Schwörer

<p>Current and future climate change is a serious threat to biodiversity and ecosystem stability. With a rapid increase of global temperatures by 1.5°C since the pre-industrial period and a projected warming of 1.5-4°C by the end of this century, plant species are forced to either adapt to these changes, shift their distribution range to higher elevation, or face population decline and extinction. Today, there is an urgent need to better understand the responses of mountain vegetation to climate change in order to predict the consequences of the human-driven global change currently occurring during the Anthropocene and maintain species diversity and ecosystem services. However, most predictions are based on short-term experiments. There is, in general, an insufficient use of longer time scales in conservation biology to understand long-term processes. Palaeoecological data are a great source of information to infer past species responses to changing environmental factors, such as climate or anthropogenic disturbances.</p><p>The last climate change of a similar magnitude and rate as projected for this century was the transition between the last Ice Age and the Holocene interglacial (ca. 11,700 years ago). By analyzing subfossil plant remains such as plant macrofossils, charcoal and pollen from natural archives, we can study past responses to climate change. However, until recently it was not possible to reconstruct changes at the population level. With the development of new methods to extract ancient DNA (aDNA) from plant remains and next generation DNA-sequencing techniques, we can now infer past population dynamics by analyzing the genetic variation through time. Ancient DNA might also be able to reveal if species could adapt to climatic changes by identifying intraspecific variation of specific genes related to climatic adaptations.</p><p>We are currently investigating a palaeoecological archive from a high-altitude mountain lake, Lai da Vons (1991 m a.s.l), situated in Eastern Switzerland. We are presenting preliminary macrofossil, pollen and charcoal results to reconstruct local to regional vegetation and fire dynamics with high chronological precision and resolution. In a next step, we will use novel molecular methods, in order to track adaptive and neutral genetic diversity through the Holocene by analyzing aDNA from subfossil conifer needles. The overarching goal of this large-scale, multiproxy study is to better understand past vegetation dynamics and the impact of future climate change on plants at multiple scales; from the genetic to the community level.</p><p> </p>


1992 ◽  
Vol 22 (11) ◽  
pp. 1727-1738 ◽  
Author(s):  
Allen M. Solomon ◽  
Patrick J. Bartlein

During the 21st century, global climate change is expected to become a significant force redefining global biospheric boundaries and vegetation dynamics. In the northern hardwood–boreal forest transition forests, it should, at the least, control reproductive success and failure among unmanaged mixed forest stands. One means by which to predict future responses by the mixed forests is to examine the way in which they have responded to climate changes in the past. We used proxy climate data derived from Holocene (past 10 000 years) pollen records in the western Upper Peninsula of Michigan to drive forest gap models, in an effort to define regional prehistoric vegetation dynamics on differing soils. The gap models mimic forest reproduction and growth as a successional process and, hence, are appropriate for defining long-term tree and stand dynamics. The modeled period included a mid-postglacial period that was warmer than today's climate. Model failures, made apparent from the exercise, were corrected and the simulations were repeated until the model behaved credibly. Then, the same gap model was used to simulate potential future vegetation dynamics, driven by projections of a future climate that was controlled by greenhouse gases. This provided us with the same "measure" of vegetation in the past, present, and future, generating a continuously comparable record of change and stability in forest composition and density. The resulting projections of vegetation response to climate change appear to be affected more by the rate than by the magnitude of climate change.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document