Modified Sumudu Decomposition Method for Solving Lane-Emden-Fowler Type Systems

2021 ◽  
Vol 20 ◽  
pp. 446-454
Author(s):  
Chokchai Viriyapong ◽  
Nongluk Viriyapong

In this paper, the Sumudu decomposition method (SDM) is modified and applied to solve systems of singular equations of the Lane-Emden-Fowler type. The proposed method is based on the application of Sumudu transform and Adomian decomposition method. Some illustrative examples are given to demonstrate the efficiency of the proposed technique. The results show that the modified method is simple and effective

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hassan Eltayeb ◽  
Adem Kılıçman ◽  
Said Mesloub

We develop a method to obtain approximate solutions for nonlinear systems of Volterra integrodifferential equations with the help of Sumudu decomposition method (SDM). The technique is based on the application of Sumudu transform to nonlinear coupled Volterra integrodifferential equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of three examples and results of the present technique have close agreement with approximate solutions which were obtained with the help of Adomian decomposition method (ADM).


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Hassan Eltayeb ◽  
Adem Kılıçman

We develop a method to obtain approximate solutions of nonlinear system of partial differential equations with the help of Sumudu decomposition method (SDM). The technique is based on the application of Sumudu transform to nonlinear coupled partial differential equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of three examples, and results of the present technique have close agreement with approximate solutions obtained with the help of Adomian decomposition method (ADM).


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohamed Z. Mohamed ◽  
Tarig M. Elzaki ◽  
Mohamed S. Algolam ◽  
Eltaib M. Abd Elmohmoud ◽  
Amjad E. Hamza

The objective of this paper is to compute the new modified method of variational iteration and the Laplace Adomian decomposition method for the solution of nonlinear fractional partial differential equations. We execute a comparatively newfangled analytical mechanism that is denoted by the modified Laplace variational iteration method (MLVIM) and Laplace Adomian decomposition method (LADM). The effect of the numerical results indicates that the double approximation is handy to execute and reliable when applied. It is shown that numerical solutions are gained in the form of approximately series which are facilely computable.


2021 ◽  
Author(s):  
Tarig M. Elzaki ◽  
Shams E. Ahmed

This chapter is fundamentally centering on the application of the Adomian decomposition method and Sumudu transform for solving the nonlinear partial differential equations. It has instituted some theorems, definitions, and properties of Adomian decomposition and Sumudu transform. This chapter is an elegant combination of the Adomian decomposition method and Sumudu transform. Consequently, it provides the solution in the form of convergent series, then, it is applied to solve nonlinear partial differential equations.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 243
Author(s):  
Suliman Alfaqeih ◽  
Emine Mısırlı

The current article studied a nonlinear transmission of the nerve impulse model, the Fitzhugh–Nagumo (FN) model, in the conformable fractional form with an efficient analytical approach based on a combination of conformable Sumudu transform and the Adomian decomposition method. Convergence analysis and error analysis were also carried out based on the Banach fixed point theory. We also provided some examples to support our results. The results obtained revealed that the presented approach is very fantastic, effective, reliable, and is an easy method to handle specific problems in various fields of applied sciences and engineering. The Mathematica software carried out all the computations and graphics in this paper.


2020 ◽  
Vol 12 (4) ◽  
pp. 585-605
Author(s):  
N. B. Manjare ◽  
H. T. Dinde

The purpose of this paper is to introduce Sumudu decomposition method for solving Fractional Bratu-type differential equation. This method is a combination of the Sumudu transform and Adomian decomposition method. The fractional derivative is described in the Caputo sense. The Sumudu decomposition method is applied to obtain approximate analytical solution of non-linear Fractional Bratu-type differential equation. A novel combination of Sumudu transform and Adomian decomposition provides approximate solution in the form of infinite convergent series solution. The behavior of approximate analytical solutions and exact solutions for different values of α are plotted graphically. The results acquired from Sumudu decomposition method indicates that the proposed method is very well founded, suitable and effective. Finally, some numerical examples are given to illustrate the efficiency and applicability of our method.


Sign in / Sign up

Export Citation Format

Share Document