Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranspiration Time Series 1. Theory and Application of the Model

2007 ◽  
Vol 40 (1) ◽  
pp. 73-88 ◽  
Author(s):  
Sung-Won Kim ◽  
Hung-Soo Kim
2000 ◽  
Vol 176 ◽  
pp. 135-136
Author(s):  
Toshiki Aikawa

AbstractSome pulsating post-AGB stars have been observed with an Automatic Photometry Telescope (APT) and a considerable amount of precise photometric data has been accumulated for these stars. The datasets, however, are still sparse, and this is a problem for applying nonlinear time series: for instance, modeling of attractors by the artificial neural networks (NN) to the datasets. We propose the optimization of data interpolations with the genetic algorithm (GA) and the hybrid system combined with NN. We apply this system to the Mackey–Glass equation, and attempt an analysis of the photometric data of post-AGB variables.


2021 ◽  
Vol 18 (2) ◽  
pp. 40-55
Author(s):  
Lídio Mauro Lima Campos ◽  
◽  
Jherson Haryson Almeida Pereira ◽  
Danilo Souza Duarte ◽  
Roberto Célio Limão Oliveira ◽  
...  

The aim of this paper is to introduce a biologically inspired approach that can automatically generate Deep Neural networks with good prediction capacity, smaller error and large tolerance to noises. In order to do this, three biological paradigms were used: Genetic Algorithm (GA), Lindenmayer System and Neural Networks (DNNs). The final sections of the paper present some experiments aimed at investigating the possibilities of the method in the forecast the price of energy in the Brazilian market. The proposed model considers a multi-step ahead price prediction (12, 24, and 36 weeks ahead). The results for MLP and LSTM networks show a good ability to predict peaks and satisfactory accuracy according to error measures comparing with other methods.


Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 235 ◽  
Author(s):  
Papageorgiou ◽  
Poczeta ◽  
Papageorgiou ◽  
Gerogiannis ◽  
Stamoulis

This paper introduced a new ensemble learning approach, based on evolutionary fuzzy cognitive maps (FCMs), artificial neural networks (ANNs), and their hybrid structure (FCM-ANN), for time series prediction. The main aim of time series forecasting is to obtain reasonably accurate forecasts of future data from analyzing records of data. In the paper, we proposed an ensemble-based forecast combination methodology as an alternative approach to forecasting methods for time series prediction. The ensemble learning technique combines various learning algorithms, including SOGA (structure optimization genetic algorithm)-based FCMs, RCGA (real coded genetic algorithm)-based FCMs, efficient and adaptive ANNs architectures, and a hybrid structure of FCM-ANN, recently proposed for time series forecasting. All ensemble algorithms execute according to the one-step prediction regime. The particular forecast combination approach was specifically selected due to the advanced features of each ensemble component, where the findings of this work evinced the effectiveness of this approach, in terms of prediction accuracy, when compared against other well-known, independent forecasting approaches, such as ANNs or FCMs, and the long short-term memory (LSTM) algorithm as well. The suggested ensemble learning approach was applied to three distribution points that compose the natural gas grid of a Greek region. For the evaluation of the proposed approach, a real-time series dataset for natural gas prediction was used. We also provided a detailed discussion on the performance of the individual predictors, the ensemble predictors, and their combination through two well-known ensemble methods (the average and the error-based) that are characterized in the literature as particularly accurate and effective. The prediction results showed the efficacy of the proposed ensemble learning approach, and the comparative analysis demonstrated enough evidence that the approach could be used effectively to conduct forecasting based on multivariate time series.


Sign in / Sign up

Export Citation Format

Share Document