Relationships among the Geordie Lake Cu-Pd deposit, alkaline basalt, and syenites in the Coldwell Complex, Midcontinent Rift, Canada

2021 ◽  
Vol 59 (6) ◽  
pp. 1571-1597
Author(s):  
David J. Good ◽  
Robert L. Linnen ◽  
Imran Meghji ◽  
Iain M. Samson ◽  
John McBride

ABSTRACT The Geordie Lake Cu-Pd deposit is associated with troctolite at the base of the Geordie Lake intrusion, located near the center of the Coldwell Complex (1106.5 + 1.2 Ma). It is the only platinum group element deposit in the Midcontinent Rift associated with alkaline rocks. This study focuses on the long-standing questions regarding genetic relationships among the Geordie Lake gabbros, the Wolfcamp basalt, and the various syenites that make up the east-central portion of the Coldwell Complex. Primitive mantle-normalized trace-element patterns for the Geordie Lake intrusion are nearly flat from Th to Ce and show negative Sr, Eu, and Zr anomalies. Characteristic ratios for the Geordie Lake gabbro and troctolite include Th/Nb (0.12), La/Nb (1.1), La/Lu (150), La/Sm (6.9), Zr/Sm (18), and Gd/Yb (2.8). Trace-element patterns that are useful for determining petrogenesis for gabbros are similar to the Wolfcamp basalt and augite syenite with some key exceptions, notably the middle rare earth element and Zr abundances. Affects due to metasomatism or crustal contamination in Wolfcamp basalt and Geordie Lake gabbros and syenites are negligible. Results of Rayleigh fractionation modeling show (1) the Geordie Lake intrusion and Wolfcamp basalt are very similar but not directly related by crystallization, (2) the gabbros and basalt are not related to the syenites, (3) the lower augite syenite can be related to the upper augite syenite and amphibole quartz syenite by fractionation of a hypothetical crystal cumulate composed of orthoclase (78%), clinopyroxene (15%), olivine (1%), and titanomagnetite (6%). We conclude that the Geordie Lake intrusion, Wolfcamp basalt, and saturated syenites in the Coldwell were derived by separate partial melting events in a common mantle source. The origin of the sulfide mineralization is enigmatic because it exhibits characteristics of both magmatic and hydrothermal processes. The sulfide assemblage changes from disseminated bornite and chalcopyrite in the basal zone to pyrrhotite plus chalcopyrite in the upper zones. Sulfides occur as coarse blebs interstitial to fresh or partly altered silicates, or as very fine grains intergrown with clusters of biotite and actinolite. Primitive mantle-normalized platinum group element patterns exhibit a W-shape for Pd-Pt-Rh-Ir-Ni, indicating a relative depletion of Pt and Ir. The Cu/Pd ratios in the mineralized zones are within the range of mantle values (1000–10,000), Pd/Pt is 14–19, Pd/Rh is 91 + 37, and Pd/Ir >16,000. The Pd/Pt, Pd/Rh, and Pd/Ir are considerably higher than in the Wolfcamp basalt (<1, 17, and 75, respectively). If the sulfides are magmatic in origin, then either the Geordie Lake magma was, unlike the Wolfcamp basalt magma, depleted in Pt, Rh, and Ir, or these elements were selectively removed from the sulfide assemblage. Alternatively, Pd was enriched by late-stage hydrothermal processes. Additional work is recommended to constrain petrogenesis of the sulfides by detailed base-metal and TABS (Te, As, Bi, Sb, and Sn) element analysis.

2021 ◽  
Vol 59 (6) ◽  
pp. 1305-1338
Author(s):  
Stephen A. Prevec ◽  
Savvas Anthony Largatzis ◽  
William Brownscombe ◽  
Tobias Salge

ABSTRACT The wide-reef facies of the Merensky Reef in the eastern part of the western lobe of the Bushveld Complex was sampled in order to better resolve otherwise spatially constrained variation in highly siderophile elements across this geological unit. The platinum group element mineralogy and whole-rock highly siderophile element concentrations were measured across two vertical sections in close proximity. In one section, the Merensky Reef unit was bound by top and bottom platinum group elements-enriched horizons (reefs) with a well-developed pegmatoidal phase in the top third of the intrareef pyroxenite, but with neither a top nor a bottom chromitite present. The other drill core section featured a thin (<1 cm thick) chromitite layer associated with the highest platinum group element concentrations of any rock in this study as the bottom reef, but with a chromitite-absent top reef, and very poor development of the pegmatoid. Primitive mantle-normalized profiles of the main lithological units show relatively flat, primitive mantle-like highly siderophile element abundances (Cr, V, Co, Ni, platinum group elements, Au and Cu) in the Merensky pyroxenite, with modest depletion in Ir-affiliated platinum group elements. The platinum group element-rich top and bottom reefs, and the pegmatoidal upper pyroxenites, display characteristic enrichment in the Pt-affiliated platinum group elements and undepleted Ir-affiliated platinum group elements. The leuconoritic hanging wall and footwall rocks show comparable highly siderophile element profiles, distinguished from one another by relative depletion in the Pt-affiliated platinum group elements of the footwall samples. The vertical variation in highly siderophile element abundances through both sections is characterized by low platinum group element abundances through the lower reef pyroxenite, with platinum group element, Au, and Cu ± Ni concentrations increasing through the upper pegmatoidal pyroxenite, and main enrichment peaks at the top and bottom reefs. Significant localized (centimeter-scale) zones of chalcophile metal depletion are present immediately above the top reef and below the bottom reef. In addition, a wider zone of Pt-affiliated platinum group elements (with Pd more depleted than Pt)-depletion was identified within the pegmatoidal pyroxenite around one meter below the top reef. The platinum group element mineralogy of the bottom reef consists mainly of platinum group element sulfides, with minor arsenides and antimonides. In contrast, the platinum group element mineralogy of the top reef, and the small amount of data from the intrareef pyroxenite, mainly consist of Pt-affiliated platinum group elements-Bi-tellurides. The Pt-sulfides are mainly equant, relatively coarse crystals (many grains between 50 to 100 μm2 area), contrasting with the Pt-affiliated platinum group elements-Sb-As and -Bi-Te minerals that tend be high aspect-ratio grains, occurring in veinlets or as rims on earlier-forming platinum group element phases. These Te-As-Bi-Sb compounds are closely associated with chlorite, actinolite, quartz, and chalcopyrite, consistent with secondary deposition at lower temperatures and association with aqueous fluids. A model is proposed involving the emplacement of the Merensky unit as a magma pulse into at least semi-crystallized host rock, followed by aqueous fluid saturation and local migration, combined with concentration of late magmatic fluids around the top and bottom contacts of the magma pulse. Late remobilization of Pt-affiliated platinum group elements from the zones immediately (centimeter-scale) above the top reef, and from the underlying meter or two of pyroxenite, and from the centimeters underlying the bottom reef, have added additional platinum group elements to the reefs as late platinum group elements-Te-As-Bi-Sb minerals, independent of whether or not chromite is present in the reef initially.


2016 ◽  
Author(s):  
Ijaz Ahmad ◽  
◽  
Jeremy P. Richards ◽  
Jingao Liu ◽  
D. Graham Pearson ◽  
...  

Author(s):  
Pedro Waterton ◽  
James Mungall ◽  
D. Graham Pearson

Sign in / Sign up

Export Citation Format

Share Document