sulfide assemblage
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 59 (6) ◽  
pp. 1571-1597
Author(s):  
David J. Good ◽  
Robert L. Linnen ◽  
Imran Meghji ◽  
Iain M. Samson ◽  
John McBride

ABSTRACT The Geordie Lake Cu-Pd deposit is associated with troctolite at the base of the Geordie Lake intrusion, located near the center of the Coldwell Complex (1106.5 + 1.2 Ma). It is the only platinum group element deposit in the Midcontinent Rift associated with alkaline rocks. This study focuses on the long-standing questions regarding genetic relationships among the Geordie Lake gabbros, the Wolfcamp basalt, and the various syenites that make up the east-central portion of the Coldwell Complex. Primitive mantle-normalized trace-element patterns for the Geordie Lake intrusion are nearly flat from Th to Ce and show negative Sr, Eu, and Zr anomalies. Characteristic ratios for the Geordie Lake gabbro and troctolite include Th/Nb (0.12), La/Nb (1.1), La/Lu (150), La/Sm (6.9), Zr/Sm (18), and Gd/Yb (2.8). Trace-element patterns that are useful for determining petrogenesis for gabbros are similar to the Wolfcamp basalt and augite syenite with some key exceptions, notably the middle rare earth element and Zr abundances. Affects due to metasomatism or crustal contamination in Wolfcamp basalt and Geordie Lake gabbros and syenites are negligible. Results of Rayleigh fractionation modeling show (1) the Geordie Lake intrusion and Wolfcamp basalt are very similar but not directly related by crystallization, (2) the gabbros and basalt are not related to the syenites, (3) the lower augite syenite can be related to the upper augite syenite and amphibole quartz syenite by fractionation of a hypothetical crystal cumulate composed of orthoclase (78%), clinopyroxene (15%), olivine (1%), and titanomagnetite (6%). We conclude that the Geordie Lake intrusion, Wolfcamp basalt, and saturated syenites in the Coldwell were derived by separate partial melting events in a common mantle source. The origin of the sulfide mineralization is enigmatic because it exhibits characteristics of both magmatic and hydrothermal processes. The sulfide assemblage changes from disseminated bornite and chalcopyrite in the basal zone to pyrrhotite plus chalcopyrite in the upper zones. Sulfides occur as coarse blebs interstitial to fresh or partly altered silicates, or as very fine grains intergrown with clusters of biotite and actinolite. Primitive mantle-normalized platinum group element patterns exhibit a W-shape for Pd-Pt-Rh-Ir-Ni, indicating a relative depletion of Pt and Ir. The Cu/Pd ratios in the mineralized zones are within the range of mantle values (1000–10,000), Pd/Pt is 14–19, Pd/Rh is 91 + 37, and Pd/Ir >16,000. The Pd/Pt, Pd/Rh, and Pd/Ir are considerably higher than in the Wolfcamp basalt (<1, 17, and 75, respectively). If the sulfides are magmatic in origin, then either the Geordie Lake magma was, unlike the Wolfcamp basalt magma, depleted in Pt, Rh, and Ir, or these elements were selectively removed from the sulfide assemblage. Alternatively, Pd was enriched by late-stage hydrothermal processes. Additional work is recommended to constrain petrogenesis of the sulfides by detailed base-metal and TABS (Te, As, Bi, Sb, and Sn) element analysis.


2018 ◽  
Vol 82 (3) ◽  
pp. 539-575 ◽  
Author(s):  
Matthew J. G. McCreesh ◽  
Marina A. Yudovskaya ◽  
Judith A. Kinnaird ◽  
Christian Reinke

ABSTRACTThis study provides the first detailed mineralogical data on platinum-group element (PGE) mineralization of the Waterberg Project, in a previously unknown segment of the Bushveld Complex located in the Southern Marginal Zone of the Limpopo Belt. The lower ultramafic F zone is dominated by sperrylite (up to 82 area%) with minor Pt–Pd bismuthotellurides, Pd–Ni arsenides, Au–Ag alloy, Rh–Pt sulfoarsenides and rare Pt–Fe alloys. The upper more felsic-rich gabbroic T zone is dominated by Pt–Pd bismuthotellurides (up to 90 area%), Pd tellurides and Au–Ag alloy with rare sperrylite, braggite, Pd stannides and antimonides. The platinum-group minerals (PGM) of the F zone are associated mainly with magmatic base-metal sulfides (pyrrhotite, troilite, chalcopyrite and pentlandite), that have undergone alteration during significant serpentinization, accompanied by the formation of the secondary sulfide assemblage. The T zone in a leucogabbroic sequence contains relics of magmatic sulfides and is characterized by the development of the indicative chalcopyrite-millerite-pyrite assemblage, which is associated with widespread hydrothermal quartz and hydrous silicates (amphiboles, phlogopite, epidote and chlorite). The fluid-induced style of PGM remobilization, the high Au/PGE and the high proportion of native gold in the high-grade T zone ores in the magnetite-bearing leucogabbroic rocks are unique to the Bushveld Complex. The genesis of the T ores is interpreted as a result of primary PGE enrichment in the zone of interaction between the first influxes of the Upper Zone fertile melt and a resident gabbroic melt at the top of the Troctolite-Gabbronorite-Anorthosite (TGA) fractionated sequence with subsequent fluid remobilization. Whether the hydrothermal overprint facilitated the PGE sequestration in a favourable setting or dispersed the pre-existing magmatic concentrations along fluid pathways remains essentially unresolved at the current stage.


2018 ◽  
Vol 82 (1) ◽  
pp. 59-88 ◽  
Author(s):  
Luke L. George ◽  
Nigel J. Cook ◽  
Bryony B. P. Crowe ◽  
Cristiana L. Ciobanu

ABSTRACTConcentration data are reported for 18 trace elements in chalcopyrite from a suite of 53 samples from 15 different ore deposits obtained by laser-ablation inductively-coupled plasma-mass spectrometry. Chalcopyrite is demonstrated to host a wide range of trace elements including Mn, Co, Zn, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi. The concentration of some of these elements can be high (hundreds to thousands of ppm) but most are typically tens to hundreds of ppm. The ability of chalcopyrite to host trace elements generally increases in the absence of other co-crystallizing sulfides. In deposits in which the sulfide assemblage recrystallized during syn-metamorphic deformation, the concentrations of Sn and Ga in chalcopyrite will generally increase in the presence of co-recrystallizing sphalerite and/or galena, suggesting that chalcopyrite is the preferred host at higher temperatures and/or pressures. Trace-element concentrations in chalcopyrite typically show little variation at the sample scale, yet there is potential for significant variation between samples from any individual deposit. The Zn:Cd ratio in chalcopyrite shows some evidence of a systematic variation across the dataset, which depends, at least in part, on temperature of crystallization. Under constant physiochemical conditions the Cd:Zn ratios in co-crystallizing chalcopyrite and sphalerite are typically approximately equal. Any distinct difference in the Cd:Zn ratios in the two minerals, and/or a non-constant Cd:Zn ratio in chalcopyrite, may be an indication of varying physiochemical conditions during crystallization.Chalcopyrite is generally a poor host for most elements considered harmful or unwanted in the smelting of Cu, suggesting it is rarely a significant contributor to the overall content of such elements in copper concentrates. The exceptions are Se and Hg which may be sufficiently enriched in chalcopyrite to exceed statutory limits and thus incur monetary penalties from a smelter.


SEG Discovery ◽  
2006 ◽  
pp. 1-15
Author(s):  
Scott L. Manske ◽  
Jeffrey W. Hedenquist ◽  
Gary O’Connor ◽  
Calin Tǎmaş ◽  
Beatrice Cauuet ◽  
...  

ABSTRACT Roşia Montană, Romania, is Europe’s largest gold deposit, with a current identifıed resource of ~400 Mt at 1.3 g/t Au and 6 g/t Ag. The deposit is hosted by a Miocene age maar-diatreme complex emplaced into Cretaceous flysch-type sedimentary rocks and intruded by dacite domes. High-resolution 40Ar/39Ar dating of adularia associated with gold-bearing veins suggests a protracted period of episodic mineralization spanning about 500,000 years. The major gold mineral is electrum, associated with pyrite, base-metal sulfıdes, and a variety of Au-Ag sulfosalts and minor tellurides. The overall aspect of the gangue and alteration mineral assemblages, as well as the sulfıde assemblage, is characteristic of intermediate sulfıdation-state epithermal deposits.


Sign in / Sign up

Export Citation Format

Share Document