scholarly journals Algorithm Of The Electronic Digital Subscript On The Basis Of The Composition Of Computing Complexities

2021 ◽  
Vol 03 (04) ◽  
pp. 102-107
Author(s):  
Davlatali Egitaliyevich Akbarov ◽  
◽  
Shukhratjon Azizjonovich Umarov ◽  

In article the new algorithm of a digital signature in composition of the existing difficulties is developed: discrete logarithming in a final field, decomposition of rather large natural number on simple multipliers, additions of points with rational coordinates of an elliptic curve. On the basis of a combination of difficulties of discrete logarithming on a final field with the characteristic of large number, decomposition of rather large odd number on simple multipliers and additions of points of an elliptic curve develops algorithm of a digital signature for formation. The conventional scheme (model) of a digital signature covers three processes: generation of keys of EDS; formation of EDS; check (authenticity confirmation) of EDS. The idea of a design of the offered algorithm allows modifying and increasing crypto stability with addition to other computing difficulties. It is intended for use in systems of information processing of different function during forming and confirmation of authenticity of digital signature.

Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


2008 ◽  
Vol 8 (10) ◽  
pp. 1919-1925 ◽  
Author(s):  
Morteza Nikooghada ◽  
Mohammad Reza Bonyadi ◽  
Ehsan Malekian ◽  
Ali Zakerolhos

Author(s):  
R. Anitha ◽  
R. S. Sankarasubramanian

This chapter presents a new simple scheme for verifiable encryption of elliptic curve digital signature algorithm (ECDSA). The protocol we present is an adjudicated protocol, that is, the trusted third party (TTP) takes part in the protocol only when there is a dispute. This scheme can be used to build efficient fair exchanges and certified email protocols. In this paper we also present the implementation issues. We present a new algorithm for multiplying two 2n bits palindromic polynomials modulo xp–1 for prime p = 2n + 1 for the concept defined in Blake, Roth, and Seroussi (1998), and it is compared with the Sunar-Koc parallel multiplier given in Sunar and Koc (2001).


2018 ◽  
Vol 10 (3) ◽  
pp. 42-60 ◽  
Author(s):  
Sahar A. El-Rahman ◽  
Daniyah Aldawsari ◽  
Mona Aldosari ◽  
Omaimah Alrashed ◽  
Ghadeer Alsubaie

IoT (Internet of Things) is regarded as a diversified science and utilization with uncommon risks and opportunities of business. So, in this article, a digital signature mobile application (SignOn) is presented where, it provides a cloud based digital signature with a high security to sustain with the growth of IoT and the speed of the life. Different algorithms were utilized to accomplish the integrity of the documents, authenticate users with their unique signatures, and encrypt their documents in order to provide the best adopted solution for cloud-based signature in the field of IoT. Where, ECDSA (Elliptic Curve Digital Signature Algorithm) is utilized to ensure the message source, Hash function (SHA-512) is used to detect all information variations, and AES (Advanced Encryption Standard) is utilized for more security. SignOn is considered as a legal obligated way of signing contracts and documents, keeping the data in electronic form in a secure cloud environment and shortens the duration of the signing process. Whereas, it allows the user to sign electronic documents and then, the verifier can validate the produced signature.


Sign in / Sign up

Export Citation Format

Share Document