scholarly journals Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

2019 ◽  
Vol 10 ◽  
pp. 1860-1872 ◽  
Author(s):  
Xianping Liu ◽  
Chengjuan Du ◽  
Haichun Li ◽  
Ting Jiang ◽  
Zimiao Luo ◽  
...  

In this work, a peptide-modified, biodegradable, nontoxic, brain-tumor-targeting nanoprobe based on superparamagnetic iron oxide nanoparticles (SPIONs) (which have been commonly used as T 2-weighted magnetic resonance (MR) contrast agents) was successfully synthesized and applied for accurate molecular MR imaging and sensitive optical imaging. PEPHC1, a short peptide which can specifically bind to epidermal growth factor receptor variant III (EGFRvIII) that is overexpressed in glioblastoma, was conjugated with SPIONs to construct the nanoprobe. Both in vitro and in vivo MR and optical imaging demonstrated that the as-constructed nanoprobe was effective and sensitive for tumor targeting with desirable biosafety. Given its desirable properties such as a 100 nm diameter (capable of penetration of the blood–brain barrier) and bimodal imaging capability, this novel and versatile multimodal nanoprobe could bring a new perspective for elucidating intracranial glioblastoma preoperative diagnosis and the accuracy of tumor resection.

2010 ◽  
Vol 19 (4) ◽  
pp. 419-429 ◽  
Author(s):  
Po-Wah So ◽  
Tammy Kalber ◽  
David Hunt ◽  
Michael Farquharson ◽  
Alia Al-Ebraheem ◽  
...  

Determination of the dynamics of specific cell populations in vivo is essential for the development of cell-based therapies. For cell tracking by magnetic resonance imaging (MRI), cells need to internalize, or be surface labeled with a MRI contrast agent, such as superparamagnetic iron oxide nanoparticles (SPIOs): SPIOs give rise to signal loss by gradient-echo and T2-weighted MRI techniques. In this study, cancer cells were chemically tagged with biotin and then magnetically labeled with anti-biotin SPIOs. No significant detrimental effects on cell viability or death were observed following cell biotinylation. SPIO-labeled cells exhibited signal loss compared to non-SPIO-labeled cells by MRI in vitro. Consistent with the in vitro MRI data, signal attenuation was observed in vivo from SPIO-labeled cells injected into the muscle of the hind legs, or implanted subcutaneously into the flanks of mice, correlating with iron detection by histochemical and X-ray fluorescence (XRF) methods. To further validate this approach, human mesenchymal stem cells (hMSCs) were also employed. Chemical biotinylation and SPIO labeling of hMSCs were confirmed by fluorescence microscopy and flow cytometry. The procedure did not affect proliferation and multipotentiality, or lead to increased cell death. The SPIO-labeled hMSCs were shown to exhibit MRI signal reduction in vitro and was detectable in an in vivo model. In this study, we demonstrate a rapid, robust, and generic methodology that may be a useful and practical adjuvant to existing methods of cell labeling for in vivo monitoring by MRI. Further, we have shown the first application of XRF to provide iron maps to validate MRI data in SPIO-labeled cell tracking studies.


2019 ◽  
Vol 21 ◽  
pp. 102063 ◽  
Author(s):  
Vladimir Mulens-Arias ◽  
José Manuel Rojas ◽  
Laura Sanz-Ortega ◽  
Yadileiny Portilla ◽  
Sonia Pérez-Yagüe ◽  
...  

2010 ◽  
Vol 75 (1) ◽  
pp. 300-309 ◽  
Author(s):  
Morteza Mahmoudi ◽  
Abdolreza Simchi ◽  
Mohammad Imani ◽  
Mohammad A. Shokrgozar ◽  
Abbas S. Milani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document