scholarly journals Catalytic Partial Oxidation of Nascent Volatiles from Rapid Pyrolysis of Woody Biomass by Using Noble Metal Supported Alumina Foam

2009 ◽  
Vol 88 (10) ◽  
pp. 894-899
Author(s):  
Yasuhiro SAKURAI ◽  
Tetsuya SHOJI ◽  
Koyo NORINAGA ◽  
Jun-ichiro HAYASHI
2015 ◽  
Vol 134 ◽  
pp. 159-167 ◽  
Author(s):  
Narumon Thimthong ◽  
Srinivas Appari ◽  
Ryota Tanaka ◽  
Keita Iwanaga ◽  
Shinji Kudo ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2495
Author(s):  
Daniela Pietrogiacomi ◽  
Maria Cristina Campa ◽  
Ida Pettiti ◽  
Simonetta Tuti ◽  
Giulia Luccisano ◽  
...  

Ni/ZrO2 catalysts, active and selective for the catalytic partial oxidation of methane to syngas (CH4-CPO), were prepared by the dry impregnation of zirconium oxyhydroxide (Zhy) or monoclinic ZrO2 (Zm), calcination at 1173 K and activation by different procedures: oxidation-reduction (ox-red) or direct reduction (red). The characterization included XRD, FESEM, in situ FTIR and Raman spectroscopies, TPR, and specific surface area measurements. Catalytic activity experiments were carried out in a flow apparatus with a mixture of CH4:O2 = 2:1 in a short contact time. Compared to Zm, Zhy favoured the formation of smaller NiO particles, implying a higher number of Ni sites strongly interacting with the support. In all the activated Ni/ZrO2 catalysts, the Ni–ZrO2 interaction was strong enough to limit Ni aggregation during the catalytic runs. The catalytic activity depended on the activation procedures; the ox-red treatment yielded very active and stable catalysts, whereas the red treatment yielded catalysts with oscillating activity, ascribed to the formation of Niδ+ carbide-like species. The results suggested that Ni dispersion was not the main factor affecting the activity, and that active sites for CH4-CPO could be Ni species at the boundary of the metal particles in a specific configuration and nuclearity.


Author(s):  
Ying Lin ◽  
Xuesong Li ◽  
Martyn Twigg ◽  
William F Northrop

This work presents a novel non-premixed opposed-flow reactive volatilization reactor that simultaneously vaporizes and partially oxidizes low volatility liquid hydrocarbons at a short contact time (<12 ms). In the reactor,...


Sign in / Sign up

Export Citation Format

Share Document