scholarly journals Numerical Solutions of Hybrid Nanofluids Flow Via Free Convection Over a Solid Sphere

Author(s):  
Mohammed Zaki Swalmeh

The purpose of the existing study is to examine how heat transfer enables consolidated by variations in the basic advantages of fluids in the existence of free convection with the assistance of suspended hybrid nanofluids. Iron-graphene oxide suspended in water as a hybrid nanofluid flow on a solid sphere is also considered in this work. The partial differential equations are gotten, for this problem, by transforming the mathematical governing equations using similarity equations (stream function). These partial differential equations are solved numerically by Keller-Box method and programmed by MATLAB program. the acquired numerical results are in excellent agreement with the preceding literature results. Graphical results of the influence of the hybrid nanofluid parameters on some physical quantities regarded to examine the behavior of hybrid nanofluid flow were attained, and they proved that hybrid nanofluid flow represents a more essential role in the operation of heat transfer than a regular nanofluid flow.

2016 ◽  
Vol 21 (1) ◽  
pp. 187-203 ◽  
Author(s):  
G.S. Seth ◽  
S. Sarkar ◽  
R. Sharma

Abstract An investigation of unsteady hydromagnetic free convection flow of a viscous, incompressible and electrically conducting fluid past an impulsively moving vertical plate with Newtonian surface heating embedded in a porous medium taking into account the effects of Hall current is carried out. The governing partial differential equations are first subjected to the Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by the Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. The numerical solutions for velocity and temperature are plotted graphically whereas the numerical results of skin friction and the Nusselt number are presented in tabular form for various parameters of interest. The present solution in special case is compared with a previously obtained solution and is found to be in excellent agreement.


Author(s):  
Dharmendra K. Mishra ◽  
Kirk D. Dolan ◽  
James V. Beck ◽  
Ferhan Ozadali

Numerical codes are important in providing solutions to partial differential equations in many areas, such as the heat transfer problem. However, verification of these codes is critical. A methodology is presented in this work as an intrinsic verification method (IVM) to the solution to the partial differential equation. Derivation of the dimensionless form of scaled sensitivity coefficients is presented, and the sum of scaled sensitivity coefficients is used in the dimensionless form to provide a method for verification. Intrinsic verification methodology is demonstrated using examples of heat transfer problems in Cartesian and cylindrical coordinate. The IVM presented here is applicable to analytical as well as numerical solutions to partial differential equations.


2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


Author(s):  
B. V. Rathish Kumar ◽  
Gopal Priyadarshi

We describe a wavelet Galerkin method for numerical solutions of fourth-order linear and nonlinear partial differential equations (PDEs) in 2D and 3D based on the use of Daubechies compactly supported wavelets. Two-term connection coefficients have been used to compute higher-order derivatives accurately and economically. Localization and orthogonality properties of wavelets make the global matrix sparse. In particular, these properties reduce the computational cost significantly. Linear system of equations obtained from discretized equations have been solved using GMRES iterative solver. Quasi-linearization technique has been effectively used to handle nonlinear terms arising in nonlinear biharmonic equation. To reduce the computational cost of our method, we have proposed an efficient compression algorithm. Error and stability estimates have been derived. Accuracy of the proposed method is demonstrated through various examples.


Sign in / Sign up

Export Citation Format

Share Document