scholarly journals Boundary Layer Flow of Dusty Williamson Fluid with Variable Viscosity Effect Over a Stretching Sheet

Author(s):  
Nur Syamilah Arifin ◽  
Abdul Rahman Mohd Kasim ◽  
Syazwani Mohd Zokri ◽  
Mohd Zuki Salleh

Numerical investigation of the boundary layer flow of Williamson fluid with the presence of dust particles over a stretching sheet is carried out by taking into account the variable viscosity effect and Newtonian heating boundary condition. The genuinely two-phase flow model which has been proved to be compatible to present the mutual relationship between non-Newtonian fluid and solid particles is considered in this present study. To be precise, the governing equations are initially transformed into ordinary differential equations through formulation process before proceeding further with the numerical computation by using Keller-box method. The resulting equations are then programmed in Matlab software. The obtained numerical results are validated with existing study found in open literature and a good agreement is achieved. The influence of pertinent parameters on velocity and temperature profiles, skin friction coefficient together with Nusselt number is presented in graphical and tabular forms. Results revealed that the increasing Williamson parameter decreases the fluid velocity of both fluid and dust phases. It is expected that the present numerical results could conceivably help in predicting the boundary layer problem arising in two-phase flow in the future.

Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 55 ◽  
Author(s):  
Stanford Shateyi ◽  
Hillary Muzara

A thorough and detailed investigation of an unsteady free convection boundary layer flow of an incompressible electrically conducting Williamson fluid over a stretching sheet saturated with a porous medium has been numerically carried out. The partial governing equations are transferred into a system of non-linear dimensionless ordinary differential equations by employing suitable similarity transformations. The resultant equations are then numerically solved using the spectral quasi-linearization method. Numerical solutions are obtained in terms of the velocity, temperature and concentration profiles, as well as the skin friction, heat and mass transfers. These numerical results are presented graphically and in tabular forms. From the results, it is found out that the Weissenberg number, local electric parameter, the unsteadiness parameter, the magnetic, porosity and the buoyancy parameters have significant effects on the flow properties.


Sign in / Sign up

Export Citation Format

Share Document