mass transfers
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 2069 (1) ◽  
pp. 012008
Author(s):  
Hiam Dahanni ◽  
Aya Rima ◽  
Kamilia Abahri ◽  
Chady El Hachem ◽  
Hassan Assoum

Abstract Spruce wood is a bio-based material that is well known in the building construction field because of its good thermal and acoustic properties. It has a heterogeneous anatomical structure and also hygroscopic nature which offers the possibility to swell or shrink–in accordance to–relative humidity solicitations. In this context, the aim of this paper is to investigate the influence of the microstructure of spruce wood on the mechanisms of heat and mass transfers. The novelty of this article is that a real 3D spruce wood structure is taken into account to model hygrothermal transfer within the material. A 3D X-ray micro-tomography was investigated for the reconstruction of the material at a resolution of 3.35 μm/pixel. Hygrothermal model was developed in order to predict the influence of the anatomical structure of wood on the material behaviour. The resulting 3D temperature and relative humidity profiles show a significant dependence on the morphological structure of the material and the mechanisms that are at the microscopic scale have an influence on the macroscopic scale.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Imen Amari ◽  
M. H. Chahbani

Heat and mass transfers inside an adsorbent bed of an adsorption heat pump (AHP) are considered poor; consequently, they can cause low system performance. They should be enhanced so as to increase the coefficient of performance of the cooling machine. The aim of this work is to study an adsorbent bed coated with the zeolite SAPO-34. A simulation model based on governing equations for energy, mass, and momentum transfers is developed using COMSOL Multiphysics software. The system zeolite SAPO-34/water has been considered. Modeling results are validated by experimental database available at the Institute for Advanced Energy Technologies “Nicola Giordano,” Italy. It has been shown that the adsorption heat pump performance is affected by both heat and mass transfer. The enhancement of heat transfer solely is not sufficient to attain high values of specific cooling power. In the case of water vapor/SAPO-34 pair, mass transfer has a significant impact on the duration of the cooling step which should be shortened if one would want to increase the specific cooling power. The sole way to do it is to enhance mass transfer inside porous adsorbent.


2021 ◽  
Vol 13 (15) ◽  
pp. 8251
Author(s):  
Silvia Ruggiero ◽  
Margarita-Niki Assimakopoulos ◽  
Rosa Francesca De Masi ◽  
Filippo de Rossi ◽  
Anastasia Fotopoulou ◽  
...  

The achievement of sustainable cities and communities is closely linked to an accurate design of the buildings. In this context, the transparent elements of the building envelope have a crucial role since, on one hand, they are a bottleneck in regards to heat and mass transfers and sound propagation, while, on the other hand, they must allow daylight penetration. Thus, they are responsible for occupants’ thermal and visual comfort and their health. Considering passive solutions for windows, the light shelves can improve natural light penetration, reducing the lights’ electricity demand and controlling windows’ related thermal aspects. The scientific literature is characterized by several studies that analyze this topic, which, however, focus only on the daylight field and sometimes the energy saving for lights. Moreover, they often refer to fixed sky type for the simulations. The aim of the present study is to analyze the application of the light shelves with a multi-disciplinary approach, by means of dynamic simulations, in the EnergyPlus engine, for a whole year. A new methodological approach is presented in order to investigate the technology under different fields of interest: daylight, lighting energy, cooling and heating needs, and thermo-hygrometric comfort. The case study chosen is an existing building, a student dormitory belonging to the University of Athens. It is subject to a deep energy renovation to conform to the “nearly Zero Energy Building” target, in the frame of a European research project called Pro-GET-onE (G.A No. 723747). By means of the calibrated numerical model of this HVAC–building system, ten different configurations of light shelves have been investigated. The best solution is given by the application of an internal horizontal light shelf placed at 50 cm from the top of the window with a depth of 90 or 60 cm. It has been found that despite the reduction in electricity demand for lighting, the variation in heating and cooling needs does not always lead to a benefit.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4294
Author(s):  
Elisiane S. Lima ◽  
João M. P. Q. Delgado ◽  
Ana S. Guimarães ◽  
Wanderson M. P. B. Lima ◽  
Ivonete B. Santos ◽  
...  

This work aims to study the drying of clay ceramic materials with arbitrary shapes theoretically. Advanced phenomenological mathematical models based on lumped analysis and their exact solutions are presented to predict the heat and mass transfers in the porous material and estimate the transport coefficients. Application has been made in hollow ceramic bricks. Different simulations were carried out to evaluate the effect of drying air conditions (relative humidity and speed) under conditions of forced and natural convection. The transient results of the moisture content and temperature of the brick, and the convective heat and mass transfer coefficients are presented, discussed and compared with experimental data, obtaining a good agreement. It was found that the lower the relative humidity is and the higher the speed of the drying air is, the higher the convective heat and mass transfer coefficients are at the surface of the brick and in the holes, and the faster the moisture removal material and heating is. Based on the predicted results, the best conditions for brick drying were given. The idea is to increase the quality of the brick after the process, to reduce the waste of raw material and energy consumption in the process.


Author(s):  
Windé Nongué Daniel Koumbem ◽  
Issaka Ouédraogo ◽  
Noufou Bagaya ◽  
Pelega Florent Kieno

The thermal behavior of air by natural convection in a confined trapezoidal cavity, one of the walls of which is subjected to a constant heat flow in hot climates, has been analyzed numerically. The heat and mass transfers are carried out by the classical equations of natural convection. These equations are discretized using the Finite Difference Method and the algebraic systems of equations thus obtained are solved with the Thomas and Gauss algorithms. We analyze the influence of the number on the current and isothermal lines as well as the effects of the aspect ratio A = l / H and the angle of inclination φ. In particular, we have shown that convective exchanges in the cavity are preponderant for high Ra numbers. Also we have watches the increase in the values ​​of the isothermal lines and the decrease in the intensity of the streamlines for the low values ​​of A and of the angle φ.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1388
Author(s):  
Birhanu Bayissa Gicha ◽  
Lemma Teshome Tufa ◽  
Sohyun Kang ◽  
Mahendra Goddati ◽  
Eneyew Tilahun Bekele ◽  
...  

Water splitting driven by renewable energy sources is considered a sustainable way of hydrogen production, an ideal fuel to overcome the energy issue and its environmental challenges. The rational design of electrocatalysts serves as a critical point to achieve efficient water splitting. Layered double hydroxides (LDHs) with two-dimensionally (2D) layered structures hold great potential in electrocatalysis owing to their ease of preparation, structural flexibility, and tenability. However, their application in catalysis is limited due to their low activity attributed to structural stacking with irrational electronic structures, and their sluggish mass transfers. To overcome this challenge, attempts have been made toward adjusting the morphological and electronic structure using appropriate design strategies. This review highlights the current progress made on design strategies of transition metal-based LDHs (TM-LDHs) and their application as novel catalysts for oxygen evolution reactions (OERs) in alkaline conditions. We describe various strategies employed to regulate the electronic structure and composition of TM-LDHs and we discuss their influence on OER performance. Finally, significant challenges and potential research directions are put forward to promote the possible future development of these novel TM-LDHs catalysts.


Author(s):  
D. Dey ◽  
R. Borah

Stability on dual solutions of second-grade fluid flow over a stretching surface with simultaneous thermal and mass diffusions has been studied. The fluid flow is governed by Lorentz force and energy dissipation due to viscosity. Lorentz force is generated due to the application of magnetic field along the transverse direction. In methodology, suitable similarity transformation and MATLAB built-in bvp4c solver technique have been adopted. Effects of some flow parameters are exhibited through figures and tables and a special emphasis is given on the existence of dual solutions. A stability analysis is executed to determine the stable and physically achievable solutions. For the laminar flow, the drag force on the surface for the time-independent case is reduced due to amplifying values of But, it enhances the drag force for the time-dependent case. This shows the effectiveness of the first solution (during steady case) over the unsteady case.


Author(s):  
R Naveen Kumar ◽  
RJ Punith Gowda ◽  
GD Prasanna ◽  
BC Prasannakumara ◽  
Kottakkaran Sooppy Nisar ◽  
...  

The aim of this current investigation is to discuss the flow of a ferromagnetic viscous liquid with thermophoretic particle deposition over a stretching cylinder on taking account of a uniform heat source/sink. The non-dimensional form of equations for described flow is attained by using appropriate similarity variables. The solution of the resultant governing system is obtained by Runge-Kutta-Fehlberg’s fourth-fifth order method by adopting the shooting technique. The outcomes of dimensionless quantities are discussed on velocity, temperature, and concentration fields by using suitable graphs. Result reveals that the upshot in values of ferromagnetic interaction parameter increases the thermal gradient but a converse trend is detected for inclined values of heat source/sink parameter. An increase in thermophoretic parameter and thermophoretic coefficient declines the thermophoretic particle deposition velocity. The imposing of magnetic dipole and particle deposition has a receding impact on the rate of heat and mass transfers respectively. Excellent comparison is established through a tabular description to validate the adopted numerical procedure.


Sign in / Sign up

Export Citation Format

Share Document