scholarly journals Detecting and stabilizing periodic orbits of chaotic Henon map through predictive control

2018 ◽  
Vol 27 (2018) ◽  
pp. 73-78
Author(s):  
Dumitru Deleanu

The predictive control method is one of the proposed techniques based on the location and stabilization of the unstable periodic orbits (UPOs) embedded in the strange attractor of a nonlinear mapping. It assumes the addition of a small control term to the uncontrolled state of the discrete system. This term depends on the predictive state ps + 1 and p(s + 1) + 1 iterations forward, where s is the length of the UPO, and p is a large enough nonnegative integer. In this paper, extensive numerical simulations on the Henon map are carried out to confirm the ability of the predictive control to detect and stabilize all the UPOs up to a maximum length of the period. The role played by each involved parameter is investigated and additional results to those reported in the literature are presented.

2009 ◽  
Vol 19 (11) ◽  
pp. 3813-3822 ◽  
Author(s):  
ABDELKRIM BOUKABOU ◽  
BILEL SAYOUD ◽  
HAMZA BOUMAIZA ◽  
NOURA MANSOURI

This paper addresses the control of unstable fixed points and unstable periodic orbits of the n-scroll Chua's circuit. In a first step, we give necessary and sufficient conditions for exponential stabilization of unstable fixed points by the proposed predictive control method. In addition, we show how a chaotic system with multiple unstable periodic orbits can be stabilized by taking the system dynamics from one UPO to another. Control performances of these approaches are demonstrated by numerical simulations.


1994 ◽  
Vol 04 (06) ◽  
pp. 1703-1706 ◽  
Author(s):  
P. CELKA

We have built an experimental setup to apply Pyragas’s [1992, 1993] control method in order to stabilize unstable periodic orbits (UPO) in Chua’s circuit. We have been able to control low period UPO embedded in the double scroll attractor. However, experimental results show that the control method is useful under some restrictions we will discuss.


We study the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative. The prototype of such maps is the family f(y) = u —y 2 or (in different coordinates) f(y) = Ay(1 —y), in which case F^ e is the Henon map. The maps F e have constant Jacobian determinant e and, as e -> 0, collapse to the family f^. The behaviour of such one-dimensional families is quite well understood, and we are able to use their bifurcation structures and information on their non-wandering sets to obtain results on both local and global bifurcations of F/ ue , for small e . Moreover, we are able to extend these results to the area preserving family F/u. 1 , thereby obtaining (partial) bifurcation sets in the (/u, e)-plane. Among our conclusions we find that the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s theorem and the kneading theory for one-dimensional maps, is quite different for two-dimensional families. In particular, certain periodic orbits that appear at the end of the one-dimensional sequence appear at the beginning of the area preserving sequence, and infinitely many families of saddle node and period doubling bifurcation curves cross each other in the ( /u, e ) -parameter plane between e = 0 and e = 1. We obtain these results from a study of the homoclinic bifurcations (tangencies of stable and unstable manifolds) of F /u.e and of the associated sequences of periodic bifurcations that accumulate on them. We illustrate our results with some numerical computations for the orientation-preserving Henon map.


2014 ◽  
Vol 247 ◽  
pp. 487-493 ◽  
Author(s):  
Shao-Fu Wang ◽  
Xiao-Cong Li ◽  
Fei Xia ◽  
Zhan-Shan Xie

2000 ◽  
Vol 10 (03) ◽  
pp. 611-620 ◽  
Author(s):  
YU-PING TIAN ◽  
XINGHUO YU

A novel adaptive time-delayed control method is proposed for stabilizing inherent unstable periodic orbits (UPOs) in chaotic systems with unknown parameters. We first explore the inherent properties of chaotic systems and use the system state and time-delayed system state to form an asymptotically stable invariant manifold so that when the system state enters the manifold and stays in it thereafter, the resulting motion enables the stabilization of the desired UPOs. We then use the model following concept to construct an identifier for the estimation of the uncertain system parameters. We shall prove that under the developed scheme, the system parameter estimates will converge to their true values. The effectiveness of the method is confirmed by computer simulations.


2013 ◽  
Vol 23 (07) ◽  
pp. 1330025 ◽  
Author(s):  
ZBIGNIEW GALIAS ◽  
WARWICK TUCKER

The question of coexisting attractors for the Hénon map is studied numerically by performing an exhaustive search in the parameter space. As a result, several parameter values for which more than two attractors coexist are found. Using tools from interval analysis, we show rigorously that the attractors exist. In the case of periodic orbits, we verify that they are stable, and thus proper sinks. Regions of existence in parameter space of the found sinks are located using a continuation method; the basins of attraction are found numerically.


1997 ◽  
Vol 50 (2) ◽  
pp. 263 ◽  
Author(s):  
Stuart Corney

The control method of Ott, Grebogi and Yorke (1990) as applied to the Rössler system, a set of three-dimensional non-linear differential equations, is examined. Using numerical time series data for a single dynamical variable the method was successfully employed to control several of the unstable periodic orbits in a three-dimensional embedding of the data. The method also failed for a number of unstable periodic orbits due to difficulties in linearising about the orbit or the tangential coincidence of the stable manifold and the motion of the orbit with external parameter.


2002 ◽  
Vol 12 (05) ◽  
pp. 1057-1065 ◽  
Author(s):  
YANXING SONG ◽  
XINGHUO YU ◽  
GUANRONG CHEN ◽  
JIAN-XIN XU ◽  
YU-PING TIAN

In this paper, a time-delayed chaos control method based on repetitive learning is proposed. A general repetitive learning control structure based on the invariant manifold of the chaotic system is given. The integration of the repetitive learning control principle and the time-delayed chaos control technique enables adaptive learning of appropriate control actions from learning cycles. In contrast to the conventional repetitive learning control, no exact knowledge (analytic representation) of the target unstable periodic orbits is needed, except for the time delay constant, which can be identified via either experiments or adaptive learning. The controller effectively stabilizes the states of the continuous-time chaos on desired unstable periodic orbits. Simulations on the Duffing and Lorenz chaotic systems are provided to verify the design and analysis.


2012 ◽  
Vol 45 (12) ◽  
pp. 1486-1493 ◽  
Author(s):  
John Starrett ◽  
Craig Nicholas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document