delayed system
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
S. Magudeeswaran ◽  
S. Vinoth ◽  
K. Sathiyanathan ◽  
M. Sivabalan

This paper deals with the investigation of the three species food-web model. This model includes two logistically growing interaction species, namely [Formula: see text] and [Formula: see text], and the third species [Formula: see text] behaves as the predator and also host for [Formula: see text]. The species [Formula: see text] predating on the species [Formula: see text] with the Holling type-II functional response, while the first species [Formula: see text] is benefited from the third species [Formula: see text]. Further, the effect of fear is incorporated in the growth rate of species [Formula: see text] due to the predator [Formula: see text] and time lag in [Formula: see text] due to the gestation process. We explore all the biologically possible equilibrium points, and their local stability is analyzed based on the sample parameters. Next, we investigate the occurrence of Hopf-bifurcation around the interior equilibrium point by taking the value of the fear parameter as a bifurcation parameter for the non-delayed system. Moreover, we verify the local stability and existence of Hopf-bifurcation for the corresponding delayed system. Also, the direction and stability of the bifurcating periodic solutions are determined using the normal form theory and the center manifold theorem. Finally, we perform extensive numerical simulations to support the evidence of our analytical findings.


2021 ◽  
pp. 1-43
Author(s):  
PANKAJ KUMAR TIWARI ◽  
MAITRI VERMA ◽  
SOUMITRA PAL ◽  
YUN KANG ◽  
ARVIND KUMAR MISRA

Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment.


Time delays in systems are becoming important phenomena now-a-days in regards to its safety issues. A continuous delayed system proposed by A. Uçar is considered for this work. Detailed works are concentrated on finding behavior of this system of continuous delayed system with respect to different system parameters. Self-written code is used to observe the behavior of the system. Self-written code gives flexibility to see behaviors of the system in more in depth. System behavior is observed for a very large range of parameters and comparison is made with others works. Results indicate that for a certain range of values of parameters the system show predictable behavior but after certain range of parameter values the system goes to unpredictable chaotic behavior. In addition, parametric relation is shown for same type of chaotic behavior. It is expected that this finding will increase understanding of complex phenomena involved in delayed dynamical system when safety is prime importance.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150032
Author(s):  
Liping Li ◽  
Albert C. J. Luo

In this paper, the existence of periodic motions of a discontinuous delayed system with a hyperbolic switching boundary is investigated. From the delay-related [Formula: see text]-function, the crossing, sliding and grazing conditions of a flow to the switching boundary are first developed. For this time-delayed discontinuous dynamical system, there are 17 classes of generic mappings in phase plane and 66 types of local mappings in a delay duration. The generic mappings are determined by subsystems in three domains and two switching boundaries. Periodic motions in such a delay discontinuous system are constructed and predicted analytically from specific mapping structures. Three examples are given for the illustration of periodic motions with or without sliding motion on the switching boundary. This paper shows how to develop switchability conditions of motions at the switching boundary in the time-delayed discontinuous systems and how to construct the specific periodic solutions for the time-delayed discontinuous systems. This study can help us understand complex dynamics in time-delayed discontinuous dynamical systems, and one can use such analysis to control the time-delayed discontinuous dynamical systems.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Daifeng Duan ◽  
Ben Niu ◽  
Junjie Wei

<p style='text-indent:20px;'>We investigate spatiotemporal patterns near the Turing-Hopf and double Hopf bifurcations in a diffusive Holling-Tanner model on a one- dimensional spatial domain. Local and global stability of the positive constant steady state for the non-delayed system is studied. Introducing the generation time delay in prey growth, we discuss the existence of Turing-Hopf and double Hopf bifurcations and give the explicit dynamical classification near these bifurcation points. Finally, we obtain the complicated dynamics, including periodic oscillations, quasi-periodic oscillations on a three-dimensional torus, the coexistence of two stable nonconstant steady states, the coexistence of two spatially inhomogeneous periodic solutions, and strange attractors.</p>


Sign in / Sign up

Export Citation Format

Share Document