scholarly journals ON A PLANAR DYNAMICAL SYSTEM ARISING IN THE NETWORK CONTROL THEORY

2016 ◽  
Vol 21 (3) ◽  
pp. 385-398 ◽  
Author(s):  
Svetlana Atslega ◽  
Dmitrijs Finaskins ◽  
Felix Sadyrbaev

We study the structure of attractors in the two-dimensional dynamical system that appears in the network control theory. We provide description of the attracting set and follow changes this set suffers under the changes of positive parameters µ and Θ.

2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fumihiko Nakamura ◽  
Michael C. Mackey

<p style='text-indent:20px;'>In this paper we give a new sufficient condition for the existence of asymptotic periodicity of Frobenius–Perron operators corresponding to two–dimensional maps. Asymptotic periodicity for strictly expanding systems, that is, all eigenvalues of the system are greater than one, in a high-dimensional dynamical system was already known. Our new result enables one to deal with systems having an eigenvalue smaller than one. The key idea for the proof is to use a function of bounded variation defined by line integration. Finally, we introduce a new two-dimensional dynamical system numerically exhibiting asymptotic periodicity with different periods depending on parameter values, and discuss the application of our theorem to the example.</p>


2011 ◽  
Vol 11 (04) ◽  
pp. 715-752
Author(s):  
VLADIMIR BELITSKY ◽  
ANTONIO LUIZ PEREIRA ◽  
FERNANDO PIGEARD DE ALMEIDA PRADO

We analyze the stability properties of equilibrium solutions and periodicity of orbits in a two-dimensional dynamical system whose orbits mimic the evolution of the price of an asset and the excess demand for that asset. The construction of the system is grounded upon a heterogeneous interacting agent model for a single risky asset market. An advantage of this construction procedure is that the resulting dynamical system becomes a macroscopic market model which mirrors the market quantities and qualities that would typically be taken into account solely at the microscopic level of modeling. The system's parameters correspond to: (a) the proportion of speculators in a market; (b) the traders' speculative trend; (c) the degree of heterogeneity of idiosyncratic evaluations of the market agents with respect to the asset's fundamental value; and (d) the strength of the feedback of the population excess demand on the asset price update increment. This correspondence allows us to employ our results in order to infer plausible causes for the emergence of price and demand fluctuations in a real asset market. The employment of dynamical systems for studying evolution of stochastic models of socio-economic phenomena is quite usual in the area of heterogeneous interacting agent models. However, in the vast majority of the cases present in the literature, these dynamical systems are one-dimensional. Our work is among the few in the area that construct and study analytically a two-dimensional dynamical system and apply it for explanation of socio-economic phenomena.


1993 ◽  
Vol 132 ◽  
pp. 373-377
Author(s):  
G.T. Omarova ◽  
T.S. Kozhanov

AbstractA first-order linear partial differential equation is presented, giving the non-stationary potential functions U=U (x,y,t) which give rise to a given family of evoling planar orbits f(x,y,t) = c in two-dimensional dynamical system. It is shown, that this equation is applied in celestial mechanics of variable mass.


Sign in / Sign up

Export Citation Format

Share Document