scholarly journals Rural two-lane two-way three-leg and four-leg stop-controlled intersections: predicting road safety effects

2017 ◽  
Vol 12 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Salvatore Antonio Biancardo ◽  
Francesca Russo ◽  
Daiva Žilionienė ◽  
Weibin Zhang

The study focused on grade-level rural two-lane two-way three-leg and two-lane two-way four-leg stop-controlled intersections located in the flat area with a vertical grade of less than 5%. The goal is to calibrate one Safety Performance Function at these intersections by implementing a Generalized Estimating Equation with a binomial distribution and compare to the results with yearly expected crash frequencies by using models mainly refered to the scientific literature. The crash data involved 77 two-lane two-way intersections, of which 25 two-lane two-way three-leg intersections are without a left-turn lane (47 with left-turn lane), 5 two-lane two-way four-leg intersections without a left-turn lane (6 with a left-turn lane). No a right-turn lane is present on the major roads. Explanatory variables used in the Safety Performance Function are the presence or absence of a left-turn lane, mean lane width including approach lane and a left-turn lane width on the major road per travel direction, the number of legs, and the Total Annual Average Daily Traffic entering the intersection. The reliability of the Safety Performance Function was assessed using residuals analysis. A graphic outcome of the Safety Performance Function application has been plotted to easily assess a yearly expected crash frequency by varying the Average Annual Daily Traffic, the number of legs, and the presence or absence of a left-turn lane. The presence of a left-turn lane significantly reduces the yearly expected crash frequency values at intersections.

Author(s):  
Kiriakos Amiridis ◽  
Nikiforos Stamatiadis ◽  
Adam Kirk

The efficient and safe movement of traffic at signalized intersections is the primary objective of any signal-phasing and signal-timing plan. Accommodation of left turns is more critical because of the higher need for balancing operations and safety. The objective of this study was to develop models to estimate the safety effects of the use of left-turn phasing schemes. The models were based on data from 200 intersections in urban areas in Kentucky. For each intersection, approaches with a left-turn lane were isolated and considered with their opposing through approach to examine the left-turn–related crashes. This combination of movements was considered to be one of the most dangerous in intersection safety. Hourly traffic volumes and crash data were used in the modeling approach, along with the geometry of the intersection. The models allowed for the determination of the most effective type of left-turn signalization that was based on the specific characteristics of an intersection approach. The accompanying nomographs provide an improvement over existing methods and warrants and allow for a systematic and quick evaluation of the left-turn phase to be selected. The models used the most common variables that were already known during the design phase, and they could be used to determine whether a permitted or protected-only phase would suit the intersection when safety performance was considered.


2016 ◽  
Vol 88 ◽  
pp. 1-8 ◽  
Author(s):  
Ketong Wang ◽  
Jenna K. Simandl ◽  
Michael D. Porter ◽  
Andrew J. Graettinger ◽  
Randy K. Smith

2021 ◽  
Author(s):  
Meghna Chakraborty ◽  
Timothy Gates

Previous research of urban roadway safety performance has generally focused on roadways of high functional classifications, such as principal arterials. However,roadways with lower functional classifications, including minor arterials and collectors, typically possess characteristics that differ from those of higher roadway classes. Therefore, assumptions made on the general effect of the predictor variables from typical safety performance functions may not apply to lower roadway classes. Toaddress these knowledge gaps, a safety performance evaluation of urban/suburban minor arterial and collector roadway segments was performed using traffic androadway data along with eight years of crash data from 189 miles of two-lane urban and suburban roadways in Washtenaw County, Michigan. Mixed-effect negativebinomial models with segment-specific random intercept were developed for minor arterial and collector road segments, considering total, fatal+injury, and propertydamage only crashes. In general, minor arterial roadways showed greater crash occurrence compared to collector roads. Posted speed limit had a significant positiveassociation with crash frequency, and this effect increased when the speed limit exceeded 40 mph. The effect of speed limit was stronger on minor arterial segmentsand for fatal+injury crashes. Additionally, driveway density was found to have a significant effect on safety performance, which was stronger for commercial/industrialdriveways compared to residential driveways and for collector roads compared to minor arterials, particularly when considering residential driveways. On-street parkingwas associated with lower crash occurrence, with a stronger effect on collector roadways, likely due to greater parking turnover when compared to minor arterials.


Author(s):  
Holman Ospina-Mateus ◽  
Leonardo Augusto Quintana Jiménez ◽  
Francisco J. Lopez-Valdes ◽  
Shib Sankar Sana

Motorcyclists account for more than 380,000 deaths annually worldwide from road traffic accidents. Motorcyclists are the most vulnerable road users worldwide to road safety (28% of global fatalities), together with cyclists and pedestrians. Approximately 80% of deaths are from low- or middle-income countries. Colombia has a rate of 9.7 deaths per 100,000 inhabitants, which places it 10th in the world. Motorcycles in Colombia correspond to 57% of the fleet and generate an average of 51% of fatalities per year. This study aims to identify significant factors of the environment, traffic volume, and infrastructure to predict the number of accidents per year focused only on motorcyclists. The prediction model used a negative binomial regression for the definition of a Safety Performance Function (SPF) for motorcyclists. In the second stage, Bayes' empirical approach is implemented to identify motorcycle crash-prone road sections. The study is applied in Cartagena, one of the capital cities with more traffic crashes and motorcyclists dedicated to informal transportation (motorcycle taxi riders) in Colombia. The data of 2,884 motorcycle crashes between 2016 and 2017 are analyzed. The proposed model identifies that crashes of motorcyclists per kilometer have significant factors such as the average volume of daily motorcyclist traffic, the number of accesses (intersections) per kilometer, commercial areas, and the type of road and it identifies 55 critical accident-prone sections. The research evidences coherent and consistent results with previous studies and requires effective countermeasures for the benefit of road safety for motorcyclists.


2015 ◽  
Vol 33 (1) ◽  
pp. 81-89
Author(s):  
Taehun Lee ◽  
Ho-Chan Kwak ◽  
Dong-Kyu Kim ◽  
Seung-Young Kho

Sign in / Sign up

Export Citation Format

Share Document